

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

[image: cc-boat]

Container technologies are letting researchers easily share, scale, and reuse tools and workflows for all types of computational analyses. CyVerse Container Camp is an intensive three day hands-on workshop to learn how to create, us, and deploy containers across a variety of compute systems (your computer, local HPC cloud compute environments, and national resources such as OSG).

In this 3-day workshop, users will blend practical theory and hands-on exercises where small groups deploy tools and workflows they bring to the workshop.


Expected outcomes:


	How to containerize applications and workflows


	How to use other containerized applications and workflows


	How to build/deploy containerized applications and workflows


	How to scale out your computation from laptop to cloud to HPC/OSG





Getting Started


	Learning objectives

	FAIR Data principles

	Code of Conduct

	Pre-Workshop Setup

	Location

	Agenda

	About CyVerse






Workshop Topics


	Introduction to Reproducible Science

	Basics of Linux

	Training session in Docker

	Training session in Singularity

	Breakout sessions






Docker


	Finding the perfect container

	Introduction to Docker

	Advanced Docker






Singularity


	Introduction to Singularity

	Advanced Singularity

	Setting up Singularity file system

	Singularity and High Performance Computing






Breakout Sessions


	BioContainers

	Containerized Workflows

	SETUP

	Why Snakemake

	Other Workflow Managers

	Docker for Data Science






CyVerse Topics


	Booting a CyVerse Atmosphere instance

	Tool integration in the Discovery Environment (DE)

	Deploying apps in CyVerse Discovery Environment

	Deploying interactive apps in CyVerse Discovery Environment






Useful Resources


	Docker related resources

	Singularity related resources

	Other resources






Instructions and Reporting


	For instructors!

	Problems? Bugs? Questions?









          

      

      

    

  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/] Learning Center Home [http://learning.cyverse.org/]


Learning objectives

Participants will learn key containerization concepts for developing reproducible analysis pipelines, with emphasis on container lifecycle management from design to execution and scaling.

The workshop will cover key concepts about containers such as defining the architecture of containers, building images and pushing them to public and private repositories as well as how to scale your analysis from laptop to cloud and to HPC systems using containers.


  
    
    Code of Conduct
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Code of Conduct

All attendees, speakers, staff and volunteers at Container Camp are required to follow our code of conduct.

CyVerse expects and appreciates cooperation from all participants to help ensure a safe, collaborative environment for everyone. Harrassment by any individual will not be tolerated and may result in the individual being removed from the Camp.

Harassment includes: offensive verbal comments related to gender, gender identity and expression, age, sexual orientation, disability, physical appearance, body size, race, ethnicity, religion, technology choices, sexual images in public spaces, deliberate intimidation, stalking, following, harassing photography or recording, sustained disruption of talks or other events, inappropriate physical contact, and unwelcome sexual attention.

Participants who are asked to stop any harassing behavior are expected to comply immediately.

Workshop staff are also subject to the anti-harassment policy. In particular, staff should not use sexualised images, activities, or other material.

If a participant engages in harassing behavior, the workshop organisers may take any action they deem appropriate, including warning the offender or expulsion from the workshop with no refund.

If you are being harassed, or notice that someone else is being harassed, or have any other concerns, please contact a member of the workshop staff immediately. Staff can be identified as they’ll be wearing badges or nametags.

Workshop staff will be happy to help participants contact local law enforcement, provide escorts, or otherwise assist those experiencing harassment to feel safe for the duration of the workshop. We value your attendance.

We expect participants to follow these rules at conference and workshop venues and conference-related social events.

See http://www.ashedryden.com/blog/codes-of-conduct-101-faq for more information on codes of conduct.





          

      

      

    

  

  
    
    Pre-Workshop Setup
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Pre-Workshop Setup

Please complete the minimum Setup Instructions to prepare for Container Camp at CyVerse, The University of Arizona, which will run from March 10-13, 2020.








	Prerequisite

	Notes

	Additional notes





	Wi-Fi-enabled laptop

	You should be able to use any laptop (Windows/MacOS/Linux.). We strongly recommend Firefox or Chrome browser. It is recommended that you have administrative/install permissions on your laptop.

	
	Download FireFox [https://www.mozilla.org/en-US/firefox/new/?scene=2]


	Download Chrome [https://www.google.com/chrome/browser/]







	CyVerse Account

	Please ensure that you have a CyVerse account and have verified your account by completing the verification steps in the email you got when you registered.

	Register for your cyverse account at https://user.cyverse.org/.



	Github Account

	Please ensure that you have a Github account if you don’t have one already

	Register for your Github account at https://github.com/.



	Dockerhub Account

	Please ensure that you have a Dockerhub account if you don’t have one already

	Register for your Dockerhub account at https://hub.docker.com/.



	Text Editor

	Please ensure that you have a Text editor of your choice. Any decent text editor would be sufficient and
recommended ones include Atom, Sublime, & VSCode

	Download Sublime at https://www.sublimetext.com/. Download Atom at https://atom.io/. Download VSCode at https://code.visualstudio.com/



	Slack for networking

	We will be using Slack extensively for communication and networking purposes

	Register for Slack at https://slack.com/.






Optional Downloads

Listed below are some extra downloads that are not required for the workshop, but which provide some options for functionalities we will cover.








	Tool

	Notes

	Link





	SSH Clients (Windows)

	PuTTY allows SSH connection to a remote machine, and is designed for
Windows users who do not have a Mac/Linux terminal. MobaXterm is a single
Windows application that provides a ton of functions for programmers, webmasters,
IT administrators, and anybody is looking to manage system remotely

	
	Download PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html]


	Download mobaXterm [https://mobaxterm.mobatek.net]


	Update Windows 10 & install Windows Subsystem for Linux v2 (WSL2) [https://docs.microsoft.com/en-us/windows/wsl/wsl2-install]







	Cyberduck

	Cyberduck is a third-party tool for uploading/downloading data to CyVerse Data Store.
Currently, this tool is available for Windows/MacOS only. You will need
to download Cyberduck and the connection profile. We will go through
configuration and installation at the workshop.

	
	Download Cyberduck [https://cyberduck.io/]


	Download CyVerse Cyberduck connection profile [https://wiki.cyverse.org/wiki/download/attachments/18188197/iPlant%20Data%20Store.cyberduckprofile?version=1&modificationDate=1436557522000&api=v2]







	iRODS iCommands

	iCommands are command-line software to connect to the
CyVerse Data Store.

	Download and installation instructions available at CyVerse Learning Center [https://cyverse-data-store-guide.readthedocs-hosted.com/en/latest/step2.html]










          

      

      

    

  

  
    
    Location
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Location

CyVerse Container Camp will be held in Room A116 of the Roy P. Drachman Hall [https://goo.gl/maps/wu3rsFdftx46wp2R9], located at 1295 N Martin Ave, Tucson, AZ 85719



SERVICES

Drachman is adjacent the Banner University Medical Center. In the event of a medical emergency, attendees may be transported to Banner, or to the nearest urgent care [https://goo.gl/maps/ZkLMyDcDQPQEAAia9] facility.

PARKING

Nearest public parking is the Highland Garage, about 3 blocks west of Drachman ($1/hr with $8/day max) or you can take the Purple or Green CatTran shuttle to the northern terminus (the AHSL Library stop).

Drachman is an approximate 7 minute walk from The Aloft Hotel.

UArizona Campus Map: https://map.arizona.edu/

CatTran Route Map: https://parking.arizona.edu/cattran/cat-tran-routes/



Fix or improve this documentation:


	On Github: Github Repo Link


	Send feedback: Tutorials@CyVerse.org










          

      

      

    

  

  
    
    Agenda
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Agenda

Below are the schedule and classroom materials for Container Camp at The University of Arizona, which will run from March 10th to 13th, 2020.









	Day

	Time

	Topic/Activity

	Objectives





	03/10/20 (Tuesday)

	11:00-12:00

	Laptop check and pre-installation checklist

	Final check to make sure you’re ready



	
	11:30-12:00

	Instructor briefing

	


	
	12:00-12:15

	Welcome & Logistics (Tyson Swetnam)

	Cover Expectations for CC



	
	12:15-1:00

	General overview of container technology landscape (Nirav Merchant)

	Container technology



	
	1:00-2:10

	What is a container? (Tyson Swetnam)

	Basics & why you might use a container image for research



	
	2:10-2:30

	Break

	time to talk and network



	
	2:30-3:00

	Searching Image Registries (Tyson Swetnam)

	Finding the right image, downloading (pulling)



	
	3:00-5:00

	Running a container (Tyson Swetnam)

	Start a container, add a volume, opening ports, monitor, clean up



	
	5:00-5:30

	Debriefing with instructors

	













	Day

	Time

	Topic/Activity

	Notes/Links





	03/11/20 (Wednesday)

	8:00-8:30

	Instructor Briefing

	


	
	8:30-8:45

	Review Day 1

	time for questions, comments, suggestions



	
	8:45-9:45

	Containers in Distributed Computing (Mats Rynge)

	Containers used at scale



	
	9:45-10:10

	Make your own container: (Tyson Swetnam)

	Customizing base images, setting up Docker-Compose



	
	10:10-10:30

	Break

	time to talk and network



	
	10:30-11:15

	Continuous Integration with GitHub (TBA)

	Building your images with CI/CD for automation and scaling



	
	11:15-12:00

	Bringing your container image to CyVerse (Amanda Cooksey)

	Tool integration in the DE (interactive, executable, & OpenScienceGrid)



	
	12:00-1:00

	Lunch Break (on your own)

	


	
	1:00-5:00

	Breakout sessions

	Breakout sessions



	
	5:00-5:30

	Debriefing with instructors

	













	Day

	Time

	Topic/Activity

	Notes/Links





	03/12/20 (Thursday)

	8:30-8:45

	Review Day 2

	time for questions, comments, suggestions



	
	8:45-10:10

	Introduction to Singularity (Tyson Swetnam)

	Using Docker on HPC



	
	10:10-10:30

	Break

	time to talk and network



	
	10:30-12:00

	Singularity and High Performance Computing (John Fonner)

	Singularity for MPI and GPU workloads



	
	12:00-1:00

	Lunch Break (on your own)

	


	
	1:00-1:15

	Project pitches (2 min) and BYOD/BYOA

	


	
	1:15-3:10

	Project Time

	Bring Your Own Data (BYOD) & Bring your Own Analyses (BYOA)



	
	3:10-3:30

	Break

	time to talk and network



	
	3:30-5:0

	Project Time

	BYOD & BYOA



	
	5:00-5:30

	Debriefing with instructors

	













	Day

	Time

	Topic/Activity

	Notes/Links





	03/13/20 (Friday)

	8:30-8:45

	Review Day 3

	time for questions, comments, suggestions



	
	8:45-9:45

	Finalize Projects

	BYOD & BYOA



	
	9:45-10:10

	Project Presentations

	


	
	10:10-10:30

	Break

	time to talk and network



	
	10:30-11:30

	Presentations

	


	
	11:30-12:00

	Course Evaluations

	


	
	12:00

	Dismissal

	


	
	12:00-1:00

	Instructor Post Mortem

	









          

      

      

    

  

  
    
    About CyVerse
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


About CyVerse

CyVerse Vision: Transforming science through data-driven discovery.

CyVerse Mission: Design, deploy, and expand a national
cyberinfrastructure for life sciences research and train scientists in
its use. CyVerse provides life scientists with powerful computational
infrastructure to handle huge datasets and complex analyses, thus
enabling data-driven discovery. Our powerful extensible platforms
provide data storage, bioinformatics tools, image analyses, cloud
services, APIs, and more.

Originally created as the iPlant Collaborative to serve
U.S. plant science communities, the cyberinfrastructure we have built is germane
to all life sciences disciplines and works equally well on data from
plants, animals, or microbes. Thus, iPlant was renamed CyVerse to reflect the broader community now served by our infrastructure. By democratizing access to supercomputing
capabilities, we provide a crucial resource to enable scientists to find
solutions for the future. CyVerse is of, by, and for the community, and community-driven needs
shape our mission. We rely on your feedback to provide the
infrastructure you need most to advance your science, development, and
educational agenda.

CyVerse Homepage: http://www.cyverse.org

Funding and Citations

CyVerse is funded entirely by the National Science Foundation under
Award Numbers DBI-0735191, DBI-1265383 and DBI-1743442.

Please cite CyVerse appropriately when you make use of our resources,
CyVerse citation
policy [http://www.cyverse.org/acknowledge-and-cite-cyverse]





          

      

      

    

  

  
    
    Introduction to Reproducible Science
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Introduction to Reproducible Science

by Jason Williams

The so-called reproducibility crisis (see 1 , 2 , 3) is something you have
probably heard about (and maybe one of the reasons you have come to Container Camp).
Headlines in the media (such as Most scientists can't replicate studies by their peers)
definitely give pause to researchers and ordinary citizens who hope
that the science used to recommend a course of medical treatment or design
self-driving cars is sound.

Before we go further, it’s actually important to ask what is reproducibility?



Question

How do you define reproducible science?



Answer

In Reproducibility vs. Replicability, Hans Plesser gives the following
useful definitions:


	Repeatability (Same team, same experimental setup): The measurement
can be obtained with stated precision by the same team using the same
measurement procedure, the same measuring system, under the same operating
conditions, in the same location on multiple trials. For computational
experiments, this means that a researcher can reliably repeat her own
computation.


	Replicability (Different team, same experimental setup): The
measurement can be obtained with stated precision by a different team
using the same measurement procedure, the same measuring system, under the
same operating conditions, in the same or a different location on multiple
trials. For computational experiments, this means that an independent group
can obtain the same result using the author’s own artifacts.


	Reproducibility (Different team, different experimental setup): The
measurement can be obtained with stated precision by a different team,
a different measuring system, in a different location on multiple trials.
For computational experiments, this means that an independent group can
obtain the same result using artifacts which they develop completely
independently.




The paper goes on to further simplify:


	Methods reproducibility: provide sufficient detail about procedures
and data so that the same procedures could be exactly repeated.


	Results reproducibility: obtain the same results from an independent
study with procedures as closely matched to the original study as
possible.


	Inferential reproducibility: draw the same conclusions from either an
independent replication of a study or a reanalysis of the original study.















Discussion Question

How do these definitions apply to your research/teaching?

Work with your fellow learners to develop a shortlist of ways reproducibility
relates to your work. Try to identify challenges and even successes you’d
like to share.



Often, when we say “reproducibility” we mean all or at least several of the
concepts the proceeding discussion encompasses. Really, reproducibility can be
thought of as set values such as some laboratories express in a code of conduct,
(see for example Ross-Ibarra Lab code of conduct or Bahlai Lab Policies).
Reproducibility comes from our obligations and desires to work ethically,
honestly, and with confidence that the data and knowledge we produce is done
has integrity. Reproducibility is also a “spectrum of practices”, not a
single step. (See figure below from Peng 2011).


[image: spectrum]




Assuming you have taken in the potentially anxiety inducing information above,
the most important thing to know is that there is a lot of help to make
reproducibility a foundation of all of your research.



Fix or improve this documentation:


	On Github: |Github Repo Link|


	Send feedback: Tutorials@CyVerse.org










          

      

      

    

  

  
    
    Basics of Linux
    

    

    

    

    
 
  

    
      
          
            
  [image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Basics of Linux

Modern web, cloud, high performance computing, and most data science applications are run on operating systems (OS) other than Microsoft Windows. To do data intensive science, you need a familiarity with Linux [https://www.linux.org/]. We’ve scheduled several sections during Container Camp for working on Linux Systems using CyVerse’ Atmosphere Cloud [https://learning.cyverse.org/projects/Container-camp-2020/en/latest/cyverse/boot.html], which runs Linux OS virtual machines.

The good news comes in two parts. First, whether you know it or not, you probably already use Linux or a platform based on Linux, on a daily basis. Do you have an Android or iOS phone? If you own a Mac OS X [https://itsfoss.com/mac-linux-difference/] device, you already enjoy many of the benefits of a Linux-like OS, including access to a terminal. Second, the Linux experience has generally been described as satisfying [https://www.wired.com/2016/01/i-moved-to-linux-and-its-even-better-than-i-expected/], and many users report moving on from Windows OS to Linux comes without regret [https://www.freecodecamp.org/news/i-switched-from-windows-to-linux-here-are-the-lessons-i-learned-along-the-way-434da84ab63f/].

Over 87% [https://en.wikipedia.org/wiki/Usage_share_of_operating_systems] of the personal computer market still relies on the popular Microsoft OS. However, the landscape changes completely for mobile apps (99% Linux or Linux-like [Android, iOS], <0.1% Windows), web (66% Linux, 32%  Windows), and cloud or HPC (100% Linux). Microsoft is acutely aware of this disparity, and is actively working to integrate Linux into their OS, including their acquisition of GitHub [https://www.theverge.com/2018/6/18/17474284/microsoft-github-acquisition-developer-reaction] (and how it has changed [https://www.infoworld.com/article/3335256/github-after-microsoft-how-it-has-changed.html]), and the release of Windows Subsystem for Linux (WSL) 2 [https://docs.microsoft.com/en-us/windows/wsl/wsl2-install].


Common Linux Operating Systems

The most common operating systems you’ll see used for data science are:


	Alpine [https://alpinelinux.org/] - small and lightweight, useful in container applications


	CentOS [https://www.centos.org/] - stable, reliable, most commonly used on web and cloud servers


	Debian [https://www.debian.org/] - lightweight, utilitarian, stable


	Ubuntu [https://www.ubuntu.com/] - utilitarian, user friendly, most popular distribution, based on Debian




Enterprise Distributions:


	Red Hat [https://www.redhat.com/en] - based on open source software, you pay for customer support







Installing Linux


Desktop-based Distributions


	Ubuntu [https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop]


	Debian [https://www.debian.org/releases/stable/installmanual]


	Mint [https://linuxmint-installation-guide.readthedocs.io/en/latest/] - “modern, elegant and comfortable operating system which is both powerful and easy to use.”


	OpenSUSE [https://www.opensuse.org/] - “The makers’ choice for sysadmins, developers and desktop users.”







Windows Subsystem for Linux

The so-called “WSL” is a complete linux subsystem that runs under Windows 10. Microsoft recently announced WSL 2.0 [https://devblogs.microsoft.com/commandline/announcing-wsl-2/].




Windows Linux Dual boot

Not ready to take the Linux plunge yet? Why not set up a Windows-Linux dual boot?


	Ubuntu [https://www.lifewire.com/ultimate-windows-8-1-ubuntu-dual-boot-guide-2200654]


	Mint [https://itsfoss.com/guide-install-linux-mint-16-dual-boot-windows/]







Package Managers

Linux uses package management [https://en.wikipedia.org/wiki/Package_manager] services to install programs. If you’re a R user, this should seem familiar.

Packages can be installed on the command line, or in graphic UI.






Self Paced

Best Linux Distributions for Beginners [https://itsfoss.com/best-linux-beginners/]

Beginners Guide to Linux [https://www.lifewire.com/beginners-guide-to-linux-4090233]

Fix or improve this documentation:


	On Github: Github Repo Link


	Send feedback: Tutorials@CyVerse.org












          

      

      

    

  

  
    
    Training session in Docker
    

    

    

    

    
 
  

    
      
          
            
  
Training session in Docker

In these sessions we will cover various aspects of Docker containers for data science applications. Starting with the basics of pulling images from Docker Registries, running Docker containers locally and on cloud, and managing your data in a container using volumes. Topics include Docker installation, pulling and running pre-built Docker containers, and deploying browser-based applications (like Jupyter and RStudio) with Docker.


	Docker Introduction




In the advanced session, you will modify an existing container by installing your own science libraries or packages. Topics include pulling Docker containers from public and private registries, automated Docker image building from GitHub repositories, managing data in Docker containers, Docker Compose for building multiple Docker containers, amd improving your data science workflows using Docker containers.


	Advanced Docker








          

      

      

    

  

  
    
    Training session in Singularity
    

    

    

    

    
 
  

    
      
          
            
  
Training session in Singularity

In this session we will show you how to containerize your software/applications using Singularity, push them to Singularityhub and deploy them on cloud and HPC.


	Singularity Introduction




This would be the introductory session for concept of Singularity. The topics include installation Singularity on various platforms, running prebuilt singularity containers, building singularity containers locally etc.


	Advanced Singularity




This is the advanced session for the concept of Singularity. The topics include pushing and pulling Singularity images to and from Singularity hub, converting Docker containers to Singularity containers, mounting data on to Singularity containers etc.





          

      

      

    

  

  
    
    Breakout sessions
    

    

    

    

    
 
  

    
      
          
            
  
Breakout sessions


	Data Science IDEs Complexity: beginner - Lead: Tyson Swetnam, CyVerse


Docker for Data Science breakout session content

In this breakout session, you’ll learn the basics about deploying popular IDE (RStudio and Jupyter) and ML containers from the NVIDIA GPU Cloud. We will discuss the complexities of working with these different container types, with hands on examples running CyVerse and HPC with Singularity.






	Biocontainers Complexity: moderate - Lead: Amanda Cooksey, CyVerse Scientific Analyst


Biocontainer breakout session content

In this breakout session, you’ll learn about Biocontainers and apply what you’ve learned about basic container technology, such as Docker, with open source bioinformatics apps for Proteomics, Genomics, Transcriptomics, and Metabolomics.






	Containerized workflows Complexity: advanced - Lead: Sateesh Peri, CyVerse power user, University of Nevada-Reno


Containerized workflows breakout session content

In this breakout session you’ll learn about Snakemake, a workflow management system consisting of a text-based workflow specification language and a scalable execution environment. You will be introduced to the Snakemake workflow definition language and how to use the execution environment to scale workflows to compute servers and clusters while adapting to hardware specific constraints.












          

      

      

    

  

  
    
    Finding the perfect container
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


Finding the perfect container

Chances are a Docker image already exists for the application you use in your research. Rather than starting from scratch and creating your own image, you need to know where to look for existing images.


Important

But wait, what are the differences in a container and an image? An important distinction must be made with regard to base images and child images, official images and user images

container - Running instance of an image — the container runs the actual processes. A container includes an application and all of its dependencies. It shares its kernel with other containers, and runs as an isolated process in the space on the host OS.

layer - an intermediate image, the result of a single set of build commands. A Docker image is built from layers.

image - The file system and configuration of an application which is used to create the container.

tag - identifies exact version of the image. If a tag is not given, by default the :latest tag will be used.

base image - have no parent image, usually images with an OS like ubuntu, alpine or debian.

child image - build on base images, added layers with additional functionality.

official image - Sanctioned images. Docker, Inc. sponsors a dedicated team that is responsible for reviewing and publishing all Official Repositories content. This team works in collaboration with upstream software maintainers, security experts, and the broader Docker community. These are not prefixed by an organization or user name. In the Docker Hub the python, node, alpine, and nginx images are official (base) images. To find out more about them, check out the Official Docker Images Documentation [https://docs.docker.com/docker-hub/official_images/].

publisher image: - Certified images that also include support and guarantee compatibility with Docker Enterprise.

user image - are images created and shared by users like you. They build on base images and add additional functionality. Typically these are formatted as user/image-name. The user value in the image name is your Dockerhub user or organization name.

Dockerfile - is a text file that contains a list of commands that the Docker daemon calls while creating an image. The Dockerfile contains all the information that Docker needs to know to run the app — a base Docker image to run from, location of your project code, any dependencies it has, and what commands to run at start-up. It is a simple way to automate the image creation process. The best part is that the commands you write in a Dockerfile are almost identical to their equivalent Linux commands. This means you don’t really have to learn new syntax to create your own Dockerfiles.




Docker Registries

Docker uses the concept of “Registries”


Question

What EXACTLY is a Registry?



Answer

a storage and distribution system for named Docker images

Organized by owners into “repositories” with compiled “images” that users can download and run








Things you can do with Docker registries:



	Search for public images


	Pull images


	Share private images


	Push images





	You must have an account on a registry to create repositories and images.


	You can create many repositories.


	You can create many tagged images in a repository


	You can even set up your own private registry using a Docker Trusted Registry










Search image registries


Warning

Only use images from trusted sources or images for which you can see the Dockerfile. Any image from an untrusted source could contain something other than what’s indicated. If you can see the Dockerfile you can see exactly what is in the image.



The Docker command line interface uses the Docker Hub [https://hub.docker.com/] public registry by default.

Some examples of public/private registries to consider for your research needs:


	Docker Hub [https://hub.docker.com/]


	Docker Trusted Registry [https://docs.docker.com/ee/dtr/]


	Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]


	Google Container Registry [https://cloud.google.com/container-registry/docs]


	Azure Container Registry [https://azure.microsoft.com/en-us/services/container-registry/]


	NVIDIA GPU Cloud [https://ngc.nvidia.com/catalog/containers]


	Private Docker Registry [https://private-docker-registry.com/] - not official Docker


	Gitlab Container Registry [https://docs.gitlab.com/ce/administration/container_registry.html]


	Quay [https://quay.io/]


	TreeScale [https://treescale.com/]


	Canister [https://www.canister.io/]


	BioContainers Registry [https://biocontainers.pro/#/registry]





Docker Hub

Docker Hub is a service provided by Docker for finding and sharing container images with your team. Docker Hub is the most well-known and popular image registry for Docker containers.


Important

Registry  a storage and distribution system for named Docker images

Repository collection of “images” with individual “tags”.

Teams & Organizations: Manages access to private repositories.

Builds: Automatically build container images from GitHub or Bitbucket on the Docker Hub.

Webhooks: Trigger actions after a successful push to a repository to integrate Docker Hub with other services.



[image: biocontainerlogo]




BioContainers Registry

BioContainers is a community-driven project that provides the infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with special focus in proteomics, genomics, transcriptomics and metabolomics. BioContainers is based on the popular frameworks of Docker.

Although anyone can create a BioContainer, the majority of BioContainers are created by the Bioconda project. Every Bioconda package has a corresponding BioContainer available at Quay.io.




Quay

Quay is another general image registry. It works the same way as Docker Hub. However, Quay is home to all BioContainers made by the Bioconda project. Now we will find a BioContainer image at Quay, pull that image and run it on cloud virtual machine.




NVIDIA GPU Cloud

NVIDIA is one of the leading makers of graphic processing units (GPU). GPU were established as a means of handling graphics processing operations for video cards, but have been greatly expanded for use in generalized computing applications, Machine Learning, image processing, and matrix-based linear algebras.

[image: NVIDIA-docker-diagram]

NVIDIA have created their own set of Docker containers and Registries for running on CPU-GPU enabled systems.

NVIDIA-Docker runs atop the NVIDIA graphics drivers on the host system, the NVIDIA drivers are imported to the container at runtime.

NVIDIA Docker Hub [https://hub.docker.com/u/nvidia] hosts numerous NVIDIA Docker containers, from which you can build your own images.

NVIDIA GPU Cloud [https://ngc.nvidia.com] hosts numerous containers for HPC and Cloud applications. You must register an account with them (free) to access these.

NVIDIA GPU Cloud hosts three registry spaces [https://docs.nvidia.com/ngc/ngc-user-guide/ngc-spaces.html#ngc-spaces]



	nvcr.io/nvidia - catalog of fully integrated and optimized deep learning framework containers.


	nvcr.io/nvidia-hpcvis - catalog of HPC visualization containers (beta).


	nvcr.io/hpc -  popular third-party GPU ready HPC application containers.







NVIDIA Docker can be used as a base-image to create containers running graphical applications remotely. High resolution 3D screens are piped to a remote desktop platform.

Programs which leverage 3D applications include VirtualGL [https://www.virtualgl.org/], TurboVNC [https://www.turbovnc.org/], & TigerVNC [https://tigervnc.org/].

An example application of a graphics-enabled remote desktop is the use of Blender [https://www.blender.org/] for creating high level of detail images or animations.




Pull an image from a registry

To run your container you will need a computer with Docker installed.
We will use an Atmosphere cloud instance today but this can be done on any computer.


Open an Atmosphere instance


	Go to Atmosphere [https://atmo.cyverse.org/] and log in with your CyVerse credentials.


	Click on ‘projects’ tab at the top of the page.


	You should have a project called ‘Conatainer Camp 2020’; click on that tile.


	You should already have a running instance called Ubuntu 18_04 GUI XFCE Base. To confirm this look for a green dot and the word ‘Active’ under ‘status’.





[image: atmoactive]





	Copy the IP address for your instance


	Open a terminal on your computer


	Connect to your Atmoshere instance via ssh using the IP address you copied




$ ssh 128.196.142.89






	You will be asked if you are sure you want to continue–say yes.

[image: atmoauth]



	If you see something like this (below) then you have successfully logged into your Atmophere instance.

[image: atmosuccess]








Install Docker

Installing Docker on your computer takes a little time but it is reasonably straight forward and it is a one-time setup. How to install Docker.

Docker installation is much easier on an Atmosphere instance with the ‘ezd’ command.

$ ezd








Use ‘docker pull’ to get the image

Go to Docker Hub and search for ‘hello-world’ in the search bar at the top of the page.

[image: hubfind1]

Click on the ‘tag’ tab to see all the available ‘hello-world’ images.

Click the ‘copy’ icon at the right to copy the docker pull command that we will need on the command line.

Now you will need to pull the image from the registry onto your computer. Use the ‘docker pull’ command you copied from the registry above.


Note

If you are working on a system for which you don’t have root permissions you will need to use ‘sudo’ and provide your password. Like this:



$ sudo docker pull hello-world:latest





Now list the files in your current working directory

$ ls -l





Where is the image you just pulled?
Docker saves container images to the Docker directory (where Docker is installed). You won’t ever see them in your working directory.

Use ‘docker images’ to see all the images on your computer:

$ sudo docker images







Fix or improve this documentation:


	On Github: Github Repo Link


	Send feedback: Tutorials@CyVerse.org
















          

      

      

    

  

  
    
    Introduction to Docker
    

    

    

    

    
 
  

    
      
          
            
  
Introduction to Docker

[image: docker]


Prerequisites

There are no specific skills needed for this tutorial beyond a basic comfort with the command line and using a text editor.


	Install Docker on your laptop:


	Mac [https://docs.docker.com/docker-for-mac/]


	Windows [https://docs.docker.com/docker-for-windows/]


	Ubuntu [https://docs.docker.com/install/linux/docker-ce/ubuntu/]






	Install Docker on a featured Atmosphere image:




$ ezd








1.0 Docker Run

As we covered in the previous section, containers can be found in “registries” (such as the Docker Hub). You can also build your own container, but we’ll cover that tomorrow (See Advanced Section).

When you’re looking for the right container, you can search for images within a given registry directly from the command line using docker search (after you’ve logged into that registry).

$ docker search ubuntu
  NAME                                                   DESCRIPTION                                     STARS               OFFICIAL            AUTOMATED
  ubuntu                                                 Ubuntu is a Debian-based Linux operating sys…   7310                [OK]
  dorowu/ubuntu-desktop-lxde-vnc                         Ubuntu with openssh-server and NoVNC            163                                     [OK]
  rastasheep/ubuntu-sshd                                 Dockerized SSH service, built on top of offi…   131                                     [OK]
  ansible/ubuntu14.04-ansible                            Ubuntu 14.04 LTS with ansible                   90                                      [OK]
  ubuntu-upstart                                         Upstart is an event-based replacement for th…   81                  [OK]
  neurodebian                                            NeuroDebian provides neuroscience research s…   43                  [OK]
  ubuntu-debootstrap                                     debootstrap --variant=minbase --components=m…   35                  [OK]
  1and1internet/ubuntu-16-nginx-php-phpmyadmin-mysql-5   ubuntu-16-nginx-php-phpmyadmin-mysql-5          26                                      [OK]
  nuagebec/ubuntu                                        Simple always updated Ubuntu docker images w…   22                                      [OK]
  tutum/ubuntu                                           Simple Ubuntu docker images with SSH access     18
  ppc64le/ubuntu                                         Ubuntu is a Debian-based Linux operating sys…   11
  i386/ubuntu                                            Ubuntu is a Debian-based Linux operating sys…   9
  1and1internet/ubuntu-16-apache-php-7.0                 ubuntu-16-apache-php-7.0                        7                                       [OK]
  eclipse/ubuntu_jdk8                                    Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, …   5                                       [OK]
  darksheer/ubuntu                                       Base Ubuntu Image -- Updated hourly             3                                       [OK]
  codenvy/ubuntu_jdk8                                    Ubuntu, JDK8, Maven 3, git, curl, nmap, mc, …   3                                       [OK]
  1and1internet/ubuntu-16-nginx-php-5.6-wordpress-4      ubuntu-16-nginx-php-5.6-wordpress-4             2                                       [OK]
  1and1internet/ubuntu-16-nginx                          ubuntu-16-nginx                                 2                                       [OK]
  pivotaldata/ubuntu                                     A quick freshening-up of the base Ubuntu doc…   1
  smartentry/ubuntu                                      ubuntu with smartentry                          0                                       [OK]
  pivotaldata/ubuntu-gpdb-dev                            Ubuntu images for GPDB development              0
  1and1internet/ubuntu-16-healthcheck                    ubuntu-16-healthcheck                           0                                       [OK]
  thatsamguy/ubuntu-build-image                          Docker webapp build images based on Ubuntu      0
  ossobv/ubuntu                                          Custom ubuntu image from scratch (based on o…   0
  1and1internet/ubuntu-16-sshd                           ubuntu-16-sshd                                  0                                       [OK]






Note

Depending on how and where you’ve installed Docker, you may see a permission denied error after running the $ docker run helo-world command. If you’re on Linux, you may need to prefix your Docker commands with sudo. Alternatively to run docker command without sudo, you need to add your user name (who has root privileges) to the docker “group”.

Create the docker group:

$ sudo groupadd docker





Add your user to the docker group:

$ sudo usermod -aG docker $USER





Log out or close terminal and log back in and your group membership will be initiated



The single most common command that you’ll use with Docker is docker run (help manual [https://docs.docker.com/engine/reference/commandline/run/]).

docker run starts a container and executes the default entrypoint, or any other command line statement that follows run.

$ docker run alpine ls -l
total 52
drwxr-xr-x    2 root     root          4096 Dec 26  2016 bin
drwxr-xr-x    5 root     root           340 Jan 28 09:52 dev
drwxr-xr-x   14 root     root          4096 Jan 28 09:52 etc
drwxr-xr-x    2 root     root          4096 Dec 26  2016 home
drwxr-xr-x    5 root     root          4096 Dec 26  2016 lib
drwxr-xr-x    5 root     root          4096 Dec 26  2016 media
........






Note

To find out more about a Docker images, run docker inspect hello-world.



In the demo above, you could have used the docker pull command to download the hello-world image first.

When you executed the command docker run alpine, Docker looked for the image, did not find it, and then ran a docker pull behind the scenes to download the alpine image with the :latest tag.

When you run docker run alpine, you provided a command ls -l, so Docker started the command specified and you saw the listing of the alpine file system.

You can use the docker images command to see a list of all the cached images on your system:

$ docker images
REPOSITORY              TAG                 IMAGE ID            CREATED             VIRTUAL SIZE
alpine                  latest              c51f86c28340        4 weeks ago         1.109 MB
hello-world             latest              690ed74de00f        5 months ago        960 B





Images need to have an ENTRYPOINT set in their Dockerfile recipe in order for them to return a result when they are run. The hello-world image echos out the statement that it is present when it executes.

You can change the entrypoint of a container by making a statement after the repository/container_name:tag:

$ docker run alpine echo "Hello world"
Hello world





In this case, the Docker client dutifully ran the echo command in our alpine container and then exited. If you’ve noticed, all of that happened pretty quickly. Imagine booting up a virtual machine, running a command and then killing it. Now you know why they say containers are fast!

Now it’s time to see the docker ps command which shows you all containers that are currently running.

$ docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED             STATUS              PORTS               NAMES





Since no containers are running, you see a blank line. Let’s try a more useful variant: docker ps --all

$ docker ps --all
CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS                      PORTS               NAMES
36171a5da744        alpine              "/bin/sh"                5 minutes ago       Exited (0) 2 minutes ago                        fervent_newton
a6a9d46d0b2f        alpine             "echo 'hello from alp"    6 minutes ago       Exited (0) 6 minutes ago                        lonely_kilby
ff0a5c3750b9        alpine             "ls -l"                   8 minutes ago       Exited (0) 8 minutes ago                        elated_ramanujan
c317d0a9e3d2        hello-world         "/hello"                 34 seconds ago      Exited (0) 12 minutes ago                       stupefied_mcclintock





What you see above is a list of all containers that you ran. Notice that the STATUS column shows that these containers exited a few minutes ago.

Try another command, this time to access the container as a shell:

$ docker run alpine sh





Wait, nothing happened! Is that a bug? Well, no.

The container will exit after running any scripted commands such as sh, unless they are run in an “interactive” terminal (TTY) - so for this example to not exit, you need to add the -i for interactive and -t for TTY. You can run them both in a single flag as -it, which is the more common way of adding the flag:

$ docker run -it alpine sh
/ # ls
bin    dev    etc    home   lib    media  mnt    proc   root   run    sbin   srv    sys    tmp    usr    var
/ # uname -a
Linux de4bbc3eeaec 4.9.49-moby #1 SMP Wed Sep 27 23:17:17 UTC 2017 x86_64 Linux





The prompt should change to something more like / # `` -- You are now running a shell inside the container. Try out a few commands like ``ls -l, uname -a and others.

Exit out of the container by giving the exit command.

/ # exit






Note

If you type exit your container will exit and is no longer active. To check that, try the following:

$ docker ps --latest
CONTAINER ID        IMAGE                 COMMAND                  CREATED             STATUS                          PORTS                    NAMES
de4bbc3eeaec        alpine                "/bin/sh"                3 minutes ago       Exited (0) About a minute ago                            pensive_leavitt





If you want to keep the container active, then you can use keys ctrl +p ctrl +q. To make sure that it is not exited run the same docker ps --latest command again:

$ docker ps --latest
CONTAINER ID        IMAGE                 COMMAND                  CREATED             STATUS                         PORTS                    NAMES
0db38ea51a48        alpine                "sh"                     3 minutes ago       Up 3 minutes                                            elastic_lewin





Now if you want to get back into that container, then you can type docker attach <container id>. This way you can save your container:

$ docker attach 0db38ea51a48








1.1 House Keeping and Cleaning Up

Docker images are cached on your machine in the location where Docker was installed. These image files are not visible in the same directory where you might have used docker pull <imagename>.

Some Docker images can be large. Especially Data Science images with many libraries and packages pre-installed.


Important

Pulling many images from the Docker Registries may fill up your hard disk!



To inspect your system and disk use:

$ docker system info

$ docker system df





To find out how many images are on your machine, type:

$ docker images --help





To remove images that you no longer need, type:

$ docker system prune --help





This is where it becomes important to differentiate between images, containers, and volumes (which we’ll get to more in a bit). You can take care of all of the dangling images and containers on your system. Note, that prune will not removed your cached images

        $ docker system prune
WARNING! This will remove:
  - all stopped containers
  - all networks not used by at least one container
  - all dangling images
  - all dangling build cache

Are you sure you want to continue? [y/N]





If you add the -af flag it will remove “all” -a dangling images, empty containers, AND ALL CACHED IMAGES with “force” -f.




2.0  Managing Docker images

In the previous example, you pulled the alpine image from the registry and asked the Docker client to run a container based on that image. To see the list of images that are available locally on your system, run the docker images command.

$ docker images
REPOSITORY                 TAG                 IMAGE ID            CREATED             SIZE
ubuntu                     bionic              47b19964fb50        4 weeks ago         88.1MB
alpine                     latest              caf27325b298        4 weeks ago         5.53MB
hello-world                latest              fce289e99eb9        2 months ago        1.84kB
.........





Above is a list of images that I’ve pulled from the registry and those I’ve created myself (we’ll shortly see how). You will have a different list of images on your machine. The TAG refers to a particular snapshot of the image and the ID is the corresponding unique identifier for that image.

For simplicity, you can think of an image akin to a Git repository - images can be committed with changes and have multiple versions. When you do not provide a specific version number, the client defaults to latest.




2.1 Pulling and Running a JupyterLab or RStudio-Server

In this section, let’s find a Docker image which can run a Jupyter Notebook

Search for official images on Docker Hub which contain the string ‘jupyter’

$ docker search jupyter
NAME                                    DESCRIPTION                                     STARS               OFFICIAL            AUTOMATED
jupyter/datascience-notebook            Jupyter Notebook Data Science Stack from htt…   611
jupyter/all-spark-notebook              Jupyter Notebook Python, Scala, R, Spark, Me…   276
jupyterhub/jupyterhub                   JupyterHub: multi-user Jupyter notebook serv…   237                                     [OK]
jupyter/scipy-notebook                  Jupyter Notebook Scientific Python Stack fro…   227
jupyter/tensorflow-notebook             Jupyter Notebook Scientific Python Stack w/ …   201
jupyter/pyspark-notebook                Jupyter Notebook Python, Spark, Mesos Stack …   142
jupyter/minimal-notebook                Minimal Jupyter Notebook Stack from https://…   96
jupyter/base-notebook                   Small base image for Jupyter Notebook stacks…   95
jupyterhub/singleuser                   single-user docker images for use with Jupyt…   30                                      [OK]
jupyter/r-notebook                      Jupyter Notebook R Stack from https://github…   30
jupyter/nbviewer                        Jupyter Notebook Viewer                         22                                      [OK]
mikebirdgeneau/jupyterlab               Jupyterlab based on python / alpine linux wi…   21                                      [OK]
jupyter/demo                            (DEPRECATED) Demo of the IPython/Jupyter Not…   14
eboraas/jupyter                         Jupyter Notebook (aka IPython Notebook) with…   12                                      [OK]
jupyterhub/k8s-hub                                                                      11
nbgallery/jupyter-alpine                Alpine Jupyter server with nbgallery integra…   9
jupyter/repo2docker                     Turn git repositories into Jupyter enabled D…   7
jupyterhub/configurable-http-proxy      node-http-proxy + REST API                      5                                       [OK]
...





Search for images on Docker Hub which contain the string ‘rstudio’

$ docker search rstudio

NAME                                      DESCRIPTION                                     STARS               OFFICIAL            AUTOMATED
rocker/rstudio                            RStudio Server image                            289                                     [OK]
opencpu/rstudio                           OpenCPU stable release with rstudio-server (…   29                                      [OK]
rocker/rstudio-stable                     Build RStudio based on a debian:stable (debi…   16                                      [OK]
dceoy/rstudio-server                      RStudio Server                                  8                                       [OK]
rocker/rstudio-daily                                                                      6                                       [OK]
rstudio/r-base                            Docker Images for R                             6
rstudio/r-session-complete                Images for sessions and jobs in RStudio Serv…   4
rstudio/rstudio-server-pro                Default Docker image for RStudio Server Pro     1
aghorbani/rstudio-h2o                     An easy way to start rstudio and H2O to run …   1                                       [OK]
centerx/rstudio-pro                       NA                                              1                                       [OK]
mobilizingcs/rstudio                      RStudio container with mz packages pre-insta…   1                                       [OK]
calpolydatascience/rstudio-notebook       RStudio notebook                                1                                       [OK]
...






2.2 Interactive Containers

Let’s go ahead and run some basic Integraded Development Environment images from “trusted” organizations on the Docker Hub registry.

When we want to run a container that runs on the open internet, we need to add a TCP or UDP port number [https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers] from which we can access the application in a browser using the machine’s IP (Internet Protocol) address or DNS (Domain Name Service) location.

Here are some examples to run basic RStudio and Jupyter Lab:

$docker run --rm -p 8787:8787 -e PASSWORD=cc2020 rocker/rstudio





$docker run --rm -p 8888:888 jupyter/base-notebook






Note

We’ve added the --rm flag, which means the container will automatically removed from the cache when the container is exited.

When you start an IDE in a terminal, the terminal connection must stay active to keep the container alive.



If we want to keep our window in the foreground  we can use the -d - the detached flag will run the container as a background process, rather than in the foreground. When you run a container with this flag, it will start, run, telling you the container ID:

$ docker run --rm -d -p 8888:8888 jupyter/base-notebook

Unable to find image 'jupyter/base-notebook:latest' locally
latest: Pulling from jupyter/base-notebook
5c939e3a4d10: Pull complete
c63719cdbe7a: Pull complete
19a861ea6baf: Pull complete
651c9d2d6c4f: Pull complete
21b673dc817c: Pull complete
1594017be8ef: Pull complete
b392f2c5ed42: Pull complete
8e4f6538155b: Pull complete
7952536f4b86: Pull complete
61032726be98: Pull complete
3fc223ec0a58: Pull complete
23a29aed8d6e: Pull complete
25ed667252a0: Pull complete
434b2237517c: Pull complete
d33fb9062f74: Pull complete
fdc8c4d68c3d: Pull complete
Digest: sha256:3b8ec8c8e8be8023f3eeb293bbcb1d80a71d2323ae40680d698e2620e14fdcbc
Status: Downloaded newer image for jupyter/base-notebook:latest
561016e4e69e22cf2f3b5ff8cbaa229779c2bdf3bdece89b66957f3f3bc5b734
$





Note, that your terminal is still active and you can use it to launch more containers. To view the running container, use the docker ps command

$ docker ps
CONTAINER ID        IMAGE                   COMMAND                  CREATED              STATUS              PORTS                             NAMES
561016e4e69e        jupyter/base-notebook   "tini -g -- start-no…"   About a minute ago   Up About a minute   8888/tcp, 0.0.0.0:8888->888/tcp   affectionate_banzai





What if we want a Docker container to always (re)start [https://docs.docker.com/config/containers/start-containers-automatically/], even after we reboot our machine?

$ docker run --restart always












3. Managing Data in Docker

It is possible to store data within the writable layer of a container, but there are some limitations:


	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.


	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.


	Its better to put your data into the container AFTER it is build - this keeps the container size smaller and easier to move across networks.




Docker offers three different ways to mount data into a container from the Docker host:



	volumes


	bind mounts


	tmpfs volumes







When in doubt, volumes are almost always the right choice.


3.1 Volumes

|volumes|

Volumes are often a better choice than persisting data in a container’s writable layer, because using a volume does not increase the size of containers using it, and the volume’s contents exist outside the lifecycle of a given container. While bind mounts (which we will see later) are dependent on the directory structure of the host machine, volumes are completely managed by Docker. Volumes have several advantages over bind mounts:


	Volumes are easier to back up or migrate than bind mounts.


	You can manage volumes using Docker CLI commands or the Docker API.


	Volumes work on both Linux and Windows containers.


	Volumes can be more safely shared among multiple containers.


	A new volume’s contents can be pre-populated by a container.





Note

If your container generates non-persistent state data, consider using a tmpfs mount to avoid storing the data anywhere permanently, and to increase the container’s performance by avoiding writing into the container’s writable layer.




3.1.1 Choose the -v or –mount flag for mounting volumes

-v or --volume: Consists of three fields, separated by colon characters (:). The fields must be in the correct order, and the meaning of each field is not immediately obvious.


	In the case of named volumes, the first field is the name of the volume, and is unique on a given host machine.


	The second field is the path where the file or directory are mounted in the container.


	The third field is optional, and is a comma-separated list of options, such as ro.




-v /home/username/your_data_folder:/data






Note

Originally, the -v or --volume flag was used for standalone containers and the --mount flag was used for swarm services. However, starting with Docker 17.06, you can also use --mount with standalone containers. In general, --mount is more explicit and verbose. The biggest difference is that the -v syntax combines all the options together in one field, while the --mount syntax separates them. Here is a comparison of the syntax for each flag.



$docker run --rm -v $(pwd):/work -p 8787:8787 -e PASSWORD=cc2020 rocker/rstudio





In the Jupyter Lab example, we use the -e environmental flag to re-direct the URL of the container at the localhost

$docker run --rm -v $(pwd):/work -p 8888:8888 -e REDIRECT_URL=http://localhost:8888 jupyter/base-notebook





Once you’re in the container, you will see that the /work directory is mounted in the working directory.

Any data that you add to that folder outside the container will appear INSIDE the container. And any work you do inside the container saved in that folder will be saved OUTSIDE the container as well.








Docker Commands







	Command

	Usage





	docker pull

	Download an image from Docker Hub



	docker run

	Usage: docker run -it user/image:tag
starts a container with an entrypoint



	docker build

	
	Usage: docker build -t user/image:tag .

	Builds a docker image from a Dockerfile in
current working directory. -t for tagname








	docker images

	List all images on the local machine



	docker tag

	Add a new tag to an image



	docker login

	Authenticate to the Docker Hub
requires username and password



	docker push

	Usage: docker push user/image:tag
Upload an image to Docker Hub



	docker inspect

	Usage: docker inspect containerID
Provide detailed information on constructs
controlled by Docker



	docker ps -a

	List all containers on your system



	docker rm

	Usage: docker rm -f <container>
Deletes a container
-f remove running container



	docker rmi

	Deletes an image



	docker stop

	Usage: docker stop <container>
Stop a running container



	docker system

	Usage: docker system prune
Remove old images and cached layers
Usage: docker system df
View system details (cache size)









Getting more help with Docker


	The command line tools are very well documented:




$ docker --help
# shows all docker options and summaries





$ docker COMMAND --help
# shows options and summaries for a particular command






	Learn more about docker [https://docs.docker.com/get-started/]







4. Extra Demos


4.1 Portainer

Portainer [https://portainer.io/] is an open-source lightweight managment UI which allows you to easily manage your Docker hosts or Swarm cluster.


	Simple to use: It has never been so easy to manage Docker. Portainer provides a detailed overview of Docker and allows you to manage containers, images, networks and volumes. It is also really easy to deploy, you are just one Docker command away from running Portainer anywhere.


	Made for Docker: Portainer is meant to be plugged on top of the Docker API. It has support for the latest versions of Docker, Docker Swarm and Swarm mode.





4.1.1 Installation

Use the following Docker commands to deploy Portainer. Now the second line of command should be familiar to you by now. We will talk about first line of command in the Advanced Docker session.

# on CyVerse Atmosphere:
$ ezd -p

$ docker volume create portainer_data

$ docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer






	If you are on mac, you’ll just need to access the port 9000 (http://localhost:9000) of the Docker engine where portainer is running using username admin and password tryportainer


	If you are running Docker on Atmosphere/Jetstream or on any other cloud, you can open ipaddress:9000. For my case this is http://128.196.142.26:9000





Note

The -v /var/run/docker.sock:/var/run/docker.sock option can be used in Mac/Linux environments only.



[image: portainer_demo]






4.2 Play-with-docker (PWD)

PWD [https://labs.play-with-docker.com/] is a Docker playground which allows users to run Docker commands in a matter of seconds. It gives the experience of having a free Alpine Linux Virtual Machine in browser, where you can build and run Docker containers and even create clusters in Docker Swarm Mode [https://docs.docker.com/engine/swarm/]. Under the hood, Docker-in-Docker (DinD) is used to give the effect of multiple VMs/PCs. In addition to the playground, PWD also includes a training site composed of a large set of Docker labs and quizzes from beginner to advanced level available at training.play-with-docker.com [https://training.play-with-docker.com/].


4.2.1 Installation

You don’t have to install anything to use PWD. Just open https://labs.play-with-docker.com/ <https://labs.play-with-docker.com/>`_ and start using PWD


Note

You can use your Dockerhub credentials to log-in to PWD



[image: pwd]











          

      

      

    

  

  
    
    Advanced Docker
    

    

    

    

    
 
  

    
      
          
            
  
Advanced Docker

Now that we are relatively comfortable with Docker, lets look at some advanced Docker topics, such as:


	Push a Docker image to the Docker Hub Registry


	Modifying a Dockerfile and creating a new container


	Establish a Docker Hub autobuild on GitHub with CI/CD





1.0 The Dockerfile


Note

This is one of the official Docker images provided by the Jupyter Project [https://jupyter-docker-stacks.readthedocs.io/en/latest/] for you to build your own data science notebooks on:



Create a file called Dockerfile, and add content to it as described below, e.g.

$ nano Dockerfile






Important

Dockerfile needs to be capitalized.



Contents of our Dockerfile:

# base image
FROM jupyter/scipy-notebook:latest

# reset user to root for installing additional packages
USER root

# Install a few dependencies for iCommands, text editing, and monitoring instances
RUN apt-get update && apt-get install -y \
      apt-transport-https \
      gcc \
      gnupg \
      htop \
      less \
      libfuse2 \
      libpq-dev \
      libssl1.0 \
      lsb \
      nano \
      nodejs \
      python-requests \
      software-properties-common \
      vim

# Install iCommands
RUN wget https://files.renci.org/pub/irods/releases/4.1.12/ubuntu14/irods-icommands-4.1.12-ubuntu14-x86_64.deb && \
dpkg -i irods-icommands-4.1.12-ubuntu14-x86_64.deb && \
rm irods-icommands-4.1.12-ubuntu14-x86_64.deb

# reset container user to jovyan
USER jovyan

# set the work directory
WORKDIR /home/jovyan

# copy configuration json and entry file into the container
COPY jupyter_notebook_config.json /opt/conda/etc/jupyter/jupyter_notebook_config.json
COPY entry.sh /bin

# expose the public port we want to run on
EXPOSE 8888

# directory will be populated by iCommands when entry.sh is run
RUN mkdir -p /home/jovyan/.irods

ENTRYPOINT ["bash", "/bin/entry.sh"]






Note

We use a code line escape character \ to allow single line scripts to be written on multiple lines in the Dockerfile.

We also use the double characters && which essentially mean “if true, then do this” while executing the code. The && can come at the beginning of a line or the end when used with \



Now let’s talk about what each of those lines in the Dockerfile mean.

1. We’ll start by specifying our base image, using the FROM statement

FROM jupyter/scipy-notebook:latest





2. Copy existing files into the new image by using the COPY statement

COPY entry.sh /bin
COPY jupyter_notebook_config.json /opt/conda/etc/jupyter/jupyter_notebook_config.json





Before we forget, create a new file called entry.sh – use your preferred text editor to create the file, e.g. nano entry.sh and put it in the same directory as Dockerfile

#!/bin/bash

echo '{"irods_host": "data.cyverse.org", "irods_port": 1247, "irods_user_name": "$IPLANT_USER", "irods_zone_name": "iplant"}' | envsubst > $HOME/.irods/irods_environment.json

exec jupyter lab --no-browser





The entry.sh file creates an iRODS environment .json which has CyVerse Data Store configurations pre-written. It also tells Docker to start Jupter Lab and to not pop open a browser tab when doing so.

We also create a jupyter_notebook_config.json which will help launch the notebook without a token

{
  "NotebookApp": {
    "allow_origin" : "*",
        "token":"",
        "password":"",
    "nbserver_extensions": {
      "jupyterlab": true
    }
  }
}





3. Specify the port number which needs to be exposed. Since Jupyter runs on 8888 that’s what we’ll expose.

EXPOSE 8888






Note

What about CMD?

Notice that unlike some other Dockerfile this one does not end with a CMD command statement. This is on purpose.

Remember: The primary purpose of CMD is to tell the container which command it should run by default when it is started.

Can you guess what will happen if we don’t specify an ENTRYPOINT or CMD?



4. Setting a new entrypoint

When this container is run, it will now use a different default ENTRYPOINT than the original container from jupyter/scipy-notebook:latest

ENTRYPOINT ["bash", "/bin/entry.sh"]





This entrypoint runs the shell script entry.sh which we just copied into the image

A quick summary of the few basic commands we used in our Dockerfiles.


	FROM starts the Dockerfile. It is a requirement that the Dockerfile must start with the FROM command. Images are created in layers, which means you can use another image as the base image for your own. The FROM command defines your base layer. As arguments, it takes the name of the image. Optionally, you can add the Dockerhub username of the maintainer and image version, in the format username/imagename:version.


	RUN is used to build up the Image you’re creating. For each RUN command, Docker will run the command then create a new layer of the image. This way you can roll back your image to previous states easily. The syntax for a RUN instruction is to place the full text of the shell command after the RUN (e.g., RUN mkdir /user/local/foo). This will automatically run in a /bin/sh shell. You can define a different shell like this: RUN /bin/bash -c ‘mkdir /user/local/foo’


	COPY copies local files into the container.


	CMD defines the commands that will run on the Image at start-up. Unlike a RUN, this does not create a new layer for the Image, but simply runs the command. There can only be one CMD per a Dockerfile/Image. If you need to run multiple commands, the best way to do that is to have the CMD run a script. CMD requires that you tell it where to run the command, unlike RUN. So example CMD commands would be:


	EXPOSE creates a hint for users of an image which ports provide services. It is included in the information which can be retrieved via $ docker inspect <container-id>.





Note

The EXPOSE command does not actually make any ports accessible to the host! Instead, this requires publishing ports by means of the -p flag when using docker run.






2.0 Docker Build


Note

Remember to replace <DOCKERHUB_USERNAME> with your username. This username should be the same one you created when registering on Docker hub.



DOCKERHUB_USERNAME=<YOUR_DOCKERHUB_USERNAME>





For example this is how I assign my dockerhub username

DOCKERHUB_USERNAME=tswetnam





Now build the image using the following command:

$ docker build -t $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse .
Sending build context to Docker daemon  3.072kB
Step 1/3 : FROM jupyter/minimal-notebook
 ---> 36c8dd0e1d8f
Step 2/3 : COPY model.py /home/jovyan/work/
 ---> b61aefd7a735
Step 3/3 : EXPOSE 8888
 ---> Running in 519dcabe4eb3
Removing intermediate container 519dcabe4eb3
 ---> 7983fe164dc6
Successfully built 7983fe164dc6
Successfully tagged tswetnam/jupyterlab-scipy:cyverse





If everything went well, your image should be ready! Run docker images and see if your image $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse shows.


2.1 Test the image

When Docker can successfully build your Dockerfile, test it by starting a new container from your new image using the docker run command. Don’t forget to include the port forwarding options you learned about before.

$ docker run --rm -it -p 8888:8888 $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse





You should see something like this:

Executing the command: jupyter notebook
[I 07:21:25.396 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
[I 07:21:25.609 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.7/site-packages/jupyterlab
[I 07:21:25.609 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
[I 07:21:25.611 NotebookApp] Serving notebooks from local directory: /home/jovyan
[I 07:21:25.611 NotebookApp] The Jupyter Notebook is running at:
[I 07:21:25.611 NotebookApp] http://(29a022bb5807 or 127.0.0.1):8888/?token=copy-your-own-token-not-this-one
[I 07:21:25.611 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 07:21:25.612 NotebookApp]

    Copy/paste this URL into your browser when you connect for the first time,
    to login with a token:
        http://(29a022bb5807 or 127.0.0.1):8888/?token=copy-your-own-token-not-this-one





Head over to http://localhost:8888 and your Jupyter notebook server should be running.

Note: Copy the token from your own docker run output and paste it into the ‘Password or token’ input box.


Note

If you want to learn more about Dockerfiles, check out Best practices for writing Dockerfiles [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/].






2.2 Tagging images

The notation for associating a local image with a repository on a registry is username/repository:tag. The tag is optional, but recommended, since it is the mechanism that registries use to give Docker images a version. Give the repository and tag meaningful names for the context, such as get-started:part2. This will put the image in the get-started repository and tag it as part2.


Note

By default the docker image gets a latest tag if you don’t provide one. Thought convenient, it is not recommended for reproducibility purposes.



Now, put it all together to tag the image. Run docker tag image with your username, repository, and tag names so that the image will upload to your desired destination. For our docker image since we already have our Dockerhub username we will just add tag which in this case is 1.0

$ docker tag jupyterlab-scipy:cyverse $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse










3.0 Publishing your image


3.1 Log into the Docker Hub Registry


Note

If you don’t have an account, sign up for one at Docker Cloud [https://cloud.docker.com/] or Docker Hub [https://hub.docker.com/]. Make note of your username – it may or may not be the same as your email, GitHub, or CyVerse username. There are several advantages to registering with registries like DockerHub which we will see later on in the session.

If you want to authenticate to a different Registry, type the name of the registry after login:



$ docker login <registry-name>
Authenticating with existing credentials...
WARNING! Your password will be stored unencrypted in /home/tswetnam/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded





If it is your first time logging in you will be queried for your username and password.

Login with your Docker ID to push and pull images from Docker Hub or private registry.

If you don’t have a Docker ID, head over to https://hub.docker.com to create one.
Upload your tagged image to the Dockerhub repository

$ docker push $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse





Once complete, the results of this upload are publicly available. If you log in to Docker Hub, you will see the new image there, with its pull command.

[image: docker_image]

Congrats! You just made your first Docker image and shared it with the world!




3.2 Pull and run the image from the remote repository

Now run the following command to run the docker image from Dockerhub

$ docker run -p 8888:8888 --name notebooktest $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse






Note

You don’t have to run docker pull since if the image isn’t available locally on the machine, Docker will pull it from the repository.



Head over to http://<vm-address>:8888 and your app should be live.




3.3 Private repositories

In an earlier part, we had looked at the Docker Hub, which is a public registry that is hosted by Docker. While the Dockerhub plays an important role in giving public visibility to your Docker images and for you to utilize quality Docker images put up by others, there is a clear need to setup your own private registry too for your team/organization. For example, CyVerse has it own private registry which will be used to push the Docker images.


3.4 Pull down the Registry Image

You might have guessed by now that the registry must be available as a Docker image from the Docker Hub and it should be as simple as pulling the image down and running that. You are correct!

A Dockerhub search on the keyword registry brings up the following image as the top result:

[image: private_registry]

Run a container from registry Dockerhub image

$ docker run -d -p 5000:5000 --name registry registry:2





Run docker ps --latest to check the recent container from this Docker image

$ docker ps --latest
CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS              PORTS                    NAMES
6e44a0459373        registry:2          "/entrypoint.sh /e..."   11 seconds ago      Up 10 seconds       0.0.0.0:5000->5000/tcp   registry








Tag the image that you want to push

Next step is to tag your image under the registry namespace and push it there

$ REGISTRY=localhost:5000

$ docker tag $DOCKERHUB_USERNAME/jupyterlab-scipy:cyverse $REGISTRY/$(whoami)/mynotebook:1.0








Publish the image into the local registry

Finally push the image to the local registry

$ docker push $REGISTRY/$(whoami)/mynotebook:1.0
The push refers to a repository [localhost:5000/julianp/mynotebook]
64436820c85c: Pushed
831cff83ec9e: Pushed
c3497b2669a8: Pushed
1c5b16094682: Pushed
c52044a91867: Pushed
60ab55d3379d: Pushed
1.0: digest: sha256:5095dea8b2cf308c5866ef646a0e84d494a00ff0e9b2c8e8313a176424a230ce size: 1572








Pull and run the image from the local repository

You can also pull the image from the local repository similar to how you pull it from Dockerhub and run a container from it

$ docker run -P --name=mynotebooklocal $REGISTRY/$(whoami)/jupyterlab-scipy:cyverse












4.0 Automated Docker image building from GitHub

An automated build is a Docker image build that is triggered by a code change in a GitHub or Bitbucket repository. By linking a remote code repository to a Dockerhub automated build repository, you can build a new Docker image every time a code change is pushed to your code repository.

A build context is a Dockerfile and any files at a specific location. For an automated build, the build context is a repository containing a Dockerfile.

Automated Builds have several advantages:


	Images built in this way are built exactly as specified.


	The Dockerfile is available to anyone with access to your Docker Hub repository.


	Your repository is kept up-to-date with code changes automatically.


	Automated Builds are supported for both public and private repositories on both GitHub and Bitbucket.





4.1 Prerequisites

To use automated builds, you first must have an account on Docker Hub [https://hub.docker.com] and on the hosted repository provider (GitHub [https://github.com/] or Bitbucket [https://bitbucket.org/]). While Docker Hub supports linking both GitHub and Bitbucket repositories, here we will use a GitHub repository. If you don’t already have one, make sure you have a GitHub account. A basic account is free


Note


	If you have previously linked your Github or Bitbucket account, you must have chosen the Public and Private connection type. To view your current connection settings, log in to Docker Hub and choose Profile > Settings > Linked Accounts & Services.


	Building Windows containers is not supported.









4.2 Link your Docker Hub account to GitHub


	Log into Docker Hub.


	Click “Create Repository+”




[image: dockerhub_create]


	Click the Build Settings and select GitHub.




[image: dockerhub_createrepo]

The system prompts you to choose between Public and Private and Limited Access. The Public and Private connection type is required if you want to use the Automated Builds.


	Press Select under Public and Private connection type.
If you are not logged into GitHub, the system prompts you to enter GitHub credentials before prompting you to grant access. After you grant access to your code repository, the system returns you to Docker Hub and the link is complete.




[image: dockerhub_buildsettings]

After you grant access to your code repository, the system returns you to Docker Hub and the link is complete. For example, github linked hosted repository looks like this:

[image: dockerhub_autobuild]




4.3 Automated Container Builds

Automated build repositories rely on the integration with a version control system (GitHub or Gitlab) where your Dockerfile is kept.

Let’s create an automatic build for our container using the instructions below:


	Initialize git repository for the mynotebook directory you created for your Dockerfile




$ git init
Initialized empty Git repository in /home/julianp/mynotebook/.git/

$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

        Dockerfile
        model.py

nothing added to commit but untracked files present (use "git add" to track)

$ git add * && git commit -m "Add files and folders"
[master (root-commit) a4f732a] Add files and folders
 2 files changed, 10 insertions(+)
 create mode 100644 Dockerfile
 create mode 100644 model.py






	Create a new repository on github by navigating to this URL - https://github.com/new




[image: create_repo]


Note

Don’t initialize the repository with a README and don’t add a license.




	Push the repository to github




[image: create_repo2]

$ git remote add origin https://github.com/<your-github-username>/mynotebook.git

$ git push -u origin master
Counting objects: 7, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (7/7), 1.44 KiB | 0 bytes/s, done.
Total 7 (delta 0), reused 0 (delta 0)
To https://github.com/<your-github-username>/mynotebook.git
 * [new branch]      master -> master
Branch master set up to track remote branch master from origin.






	Select Create > Create Automated Build from Docker Hub.





	The system prompts you with a list of User/Organizations and code repositories.


	For now select your GitHub account from the User/Organizations list on the left. The list of repositories change.


	Pick the project to build. In this case mynotebook. Type in “Jupyter Test” in the Short Description box.


	If you have a long list of repos, use the filter box above the list to restrict the list. After you select the project, the system displays the Create Automated Build dialog.




[image: dockerhub_autobuilds]


Note

The dialog assumes some defaults which you can customize. By default, Docker builds images for each branch in your repository. It assumes the Dockerfile lives at the root of your source. When it builds an image, Docker tags it with the branch name.




	Customize the automated build by pressing the Click here to customize behavior link.




[image: auto_build-2.1]

Specify which code branches or tags to build from. You can build by a code branch or by an image tag. You can enter a specific value or use a regex to select multiple values. To see examples of regex, press the Show More link on the right of the page.


	Enter the master (default) for the name of the branch.


	Leave the Dockerfile location as is.


	Recall the file is in the root of your code repository.


	Specify 1.0 for the Tag Name.





	Click Create.





Important

During the build process, Docker copies the contents of your Dockerfile to Docker Hub. The Docker community (for public repositories) or approved team members/orgs (for private repositories) can then view the Dockerfile on your repository page.

The build process looks for a README.md in the same directory as your Dockerfile. If you have a README.md file in your repository, it is used in the repository as the full description. If you change the full description after a build, it’s overwritten the next time the Automated Build runs. To make changes, modify the README.md in your Git repository.




Warning

You can only trigger one build at a time and no more than one every five minutes. If you already have a build pending, or if you recently submitted a build request, Docker ignores new requests.



It can take a few minutes for your automated build job to be created. When the system is finished, it places you in the detail page for your Automated Build repository.


	Manually Trigger a Build




Before you trigger an automated build by pushing to your GitHub mynotebook repo, you’ll trigger a manual build. Triggering a manual build ensures everything is working correctly.

From your automated build page choose Build Settings

[image: auto_build-5]

Press Trigger button and finally click Save Changes.


Note

Docker builds everything listed whenever a push is made to the code repository. If you specify a particular branch or tag, you can manually build that image by pressing the Trigger. If you use a regular expression syntax (regex) to define your build branch or tag, Docker does not give you the option to manually build.



[image: auto_build-6]


	Review the build results




The Build Details page shows a log of your build systems:

Navigate to the Build Details page.

Wait until your image build is done.

You may have to manually refresh the page and your build may take several minutes to complete.

[image: auto_build-7]




Exercise 1 (5-10 mins): Updating and automated building


	git add, commit and push to your GitHub or Gitlab repo


	Trigger automatic build with a new tag (2.0) on Docker Hub


	Pull your Docker image from Docker Hub to a new location.


	Run the instance to make sure it works









5.0 Volumes Continued

When you run a container, you can bring a directory from the host system into the container, and give it a new name and location using the -v or --volume flag.

$ mkdir -p ~/local-data-folder
$ echo "some data" >> ~/local-data-folder/data.txt
$ docker run -v ${HOME}/local-data-folder:/data $YOUR_DOCKERHUB_USERNAME/mynotebook:latest cat /data/data.txt





In the example above, you can mount a folder from your localhost, in your home user directory into the container as a new directory named /data.

Unlike a bind mount, you can create and manage volumes outside the scope of any container.

A given volume can be mounted into multiple containers simultaneously. When no running container is using a volume, the volume is still available to Docker and is not removed automatically. You can remove unused volumes using docker volume prune command.

When you create a Docker volume, it is stored within a directory on the Docker Linux host (/var/lib/docker/


Note

File location on Mac OS X is a bit different: https://timonweb.com/posts/getting-path-and-accessing-persistent-volumes-in-docker-for-mac/



Let’s create a volume

$ docker volume create my-vol





List volumes:

$ docker volume ls

local               my-vol





Inspect a volume by looking at the Mount section in the docker volume inspect

$ docker volume inspect my-vol
[
    {
        "Driver": "local",
        "Labels": {},
        "Mountpoint": "/var/lib/docker/volumes/my-vol/_data",
        "Name": "my-vol",
        "Options": {},
        "Scope": "local"
    }
]





Remove a volume

$ docker volume rm my-vol
$ docker volume ls





This example starts an alpine container and populates the new volume output-vol with the some output created by the container.

docker volume create output-vol
docker run --name=data-app --mount source=output-vol,target=/data alpine sh -c 'env >> /data/container-env.txt'





Use docker inspect output-vol to see where the volume data lives on your host, and then use cat to confirm that it contains the output created by the container.

docker volume inspect output-vol
sudo cat /var/lib/docker/volumes/output-vol/_data/container-env.txt





You should see something like:

After running either of these examples, run the following commands to clean up the container and volume.

docker rm data-app
docker volume rm output-vol






5.3 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.


Tip

If you are developing new Docker applications, consider using named volumes instead. You can’t use Docker CLI commands to directly manage bind mounts.



[image: bind_mount]


Warning

One side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories. This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.




Start a container with a bind mount

Create a bind-data directory in your home directory.

cd ~
mkdir -p ~/bind-data





Run a container, mounting this directory inside the container, and the container should create some data in there.

docker run --mount type=bind,source="$(pwd)"/bind-data,target=/data alpine sh -c 'env >> /data/container-env.txt'





Check that the output looks right.

cat ~/bind-data/container-env.txt








Use a read-only bind mount

For some development applications, the container needs to write into the bind mount, so changes are propagated back to the Docker host. At other times, the container only needs read access.

This example modifies the one above but mounts the directory as a read-only bind mount, by adding ro to the (empty by default) list of options, after the mount point within the container. Where multiple options are present, separate them by commas.

docker run --mount type=bind,source="$(pwd)"/bind-data,target=/data,readonly alpine sh -c 'ls -al /data/ && env >> /data/container-env.txt'





You should see an error message about not being able to write to a read-only file system.

sh: can't create /data/container-env.txt: Read-only file system












6.0 Docker Compose for multi-container apps

Docker Compose [https://docs.docker.com/compose/] is a tool for defining and running multi-container Docker applications. It requires you to have a docker-compose.yml file.


Note

Docker for Mac and Docker Toolbox already include Compose along with other Docker apps, so Mac users do not need to install Compose separately.
Docker for Windows and Docker Toolbox already include Compose along with other Docker apps, so most Windows users do not need to install Compose separately.

For Linux users

sudo curl -L https://github.com/docker/compose/releases/download/1.25.4/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose







Main advantages of Docker compose include:


	Your applications can be defined in a YAML file where all the same options required in docker run are now defined (reproducibility).


	It allows you to manage your application(s) as a single entity rather than dealing with starting individual containers (simplicity).




Let’s now create a Docker Compose .yml that calls Jupyter Lab SciPy


	Copy or create the jupyter_compose directory




$ mkdir jupyter_compose && cd jupyter_compose





We will also create data/ and notebooks/ folders to stage our future data and notebook work

$ mkdir jupyter_compose/data
$ mkdir jupyter_compose/notebooks






	Copy or create a entry.sh and a jupyter_notebook_config.json in the jupyter_compose/ directory




entry.sh creates an iRODS environment JSON with the user’s name and CyVerse (iPlant) zone.

#!/bin/bash

echo '{"irods_host": "data.cyverse.org", "irods_port": 1247, "irods_user_name": "$IPLANT_USER", "irods_zone_name": "iplant"}' | envsubst > $HOME/.irods/irods_environment.json

exec jupyter lab --no-browser





jupyter_notebook_config.json starts the notebook without requiring you to add the token:

{
  "NotebookApp": {
    "allow_origin" : "*",
        "token":"",
        "password":"",
    "nbserver_extensions": {
      "jupyterlab": true
    }
  }
}






	create your docker-compose.yml in the same directory jupyter_compose/


	Edit the contents of your docker-compose.yml




version: "3"
services:
  scipy-notebook:
     build: .
     image:    jupyter/scipy-notebook
     volumes:
          - "./notebooks:/notebooks"
          - "./data:/data"
          - ${LOCAL_WORKING_DIR}:/home/jovyan/work
     ports:
          - "8888:8888"
     container_name:   jupyter_scipy
     command: "entry.sh"
     restart: always






	Create a Dockerfile (use the same Jupyter SciPy Notebook as in Advanced Section 1.0)


	Build the container with docker-compose instead of docker build





Note

Handling containers with Docker Compose is fairly simple

docker-compose up





mounts the directory and starts the container

docker-compose down





destroys the container



A brief explanation of docker-compose.yml is as below:


	The web service builds from the Dockerfile in the current directory.


	Forwards the container’s exposed port to port 8888 on the host.


	Mounts the project directory on the host to /notebooks inside the container (allowing you to modify code without having to rebuild the image).


	restart: always means that it will restart whenever it fails.





	Run the container




$ docker-compose up -d





And that’s it! You should be able to see the application running on http://localhost:8888 or <ipaddress>:8888

[image: docker-compose]







          

      

      

    

  

  
    
    Introduction to Singularity
    

    

    

    

    
 
  

    
      
          
            
  
Introduction to Singularity

[image: singularity]


1. Prerequisites

There are no specific skills needed beyond a basic comfort with the command line and using a text editor. Prior experience installing Linux applications could be helpful but is not required.


Note



Important: Singularity is compatible with Docker [https://www.sylabs.io/2018/04/singularity-compatibility-with-docker-containers/], but they do have distinct differences.




Key Differences:


Docker:


	Inside a Docker container the user has escalated privileges, effectively making them root on that host system. This privilege is not supported by most administrators of High Performance Computing (HPC) centers. Meaning that Docker is not, and will likely never be, installed natively on your HPC.




Singularity:


	Same user inside as outside the container


	User only has root privileges if elevated with sudo when container is run


	Can run (and modify!) existing Docker images and containers










These key differences allow Singularity to be installed on most HPC centers. Because you can run virtually all Docker containers in Singularity, you can effectively run Docker on an HPC.






2. Singularity Installation

Sylabs Singularity homepage: https://www.sylabs.io/docs/

Singularity is more likely to be used on a remote system that you don’t have control of (e.g. HPC).


2.1 Install Singularity on Laptop

To Install Singularity on your laptop or desktop PC follow the instructions from Singularity: https://www.sylabs.io/guides/3.5/user-guide/installation.html#installation




2.2 HPC

Load the Singularity module on a HPC

If you are interested in working on HPC, you may need to contact your systems administrator and request they install Singularity [https://www.sylabs.io/guides/3.5/user-guide/installation.html#installation]. Because singularity ideally needs setuid, your admins may have some qualms about giving Singularity this privilege. If that is the case, you might consider forwarding this letter [https://www.sylabs.io/guides/3.5/user-guide/installation.html#singularity-on-a-shared-resource] to your admins.

Most HPC systems are running Environment Modules with the simple command module.

You can check to see what is available:

$ module avail singularity





If Singularity is installed, load a specific version:

$ module load singularity/3/3.5








2.3 Atmosphere Cloud

CyVerse staff have deployed an Ansible playbook called ez for software installation which includes Singularity [https://cyverse-ez-quickstart.readthedocs-hosted.com/en/latest/#]. This command only requires you to type a short line of code to install an entire software stack with all of its dependencies.

Start any Featured instance on Atmosphere <../cyverse/boot.html>_.

Type in the following in a web shell or ssh terminal.

$ ezs -r 3.5.1
DEBUG: set version to 3.5.1

* Updating ez singularity and installing singularity (this may take a few minutes, coffee break!)
Cloning into '/opt/cyverse-ez-singularity'...
remote: Enumerating objects: 24, done.
remote: Total 24 (delta 0), reused 0 (delta 0), pack-reused 24
Unpacking objects: 100% (24/24), done.
* ez singularity or singularity itself may not have updated successfully, but you can probably try executing it

To test singularity, type: singularity run shub://vsoch/hello-world
Hint: it should output "RaawwWWWWWRRRR!!")








2.4 Check Installation

Singularity should now be installed on your laptop or VM, or loaded on the HPC, you can check the installation with:

$ singularity pull shub://vsoch/hello-world
    INFO:    Downloading shub image
     59.75 MiB / 59.75 MiB [=====================================================================================================] 100.00% 49.24 MiB/s 1s
    tswetnam@tysons-box:~$ singularity run hello-world_latest.sif
    RaawwWWWWWRRRR!! Avocado!





Singularity’s command line interface allows you to build and interact with containers transparently. You can run programs inside a container as if they were running on your host system. You can easily redirect IO, use pipes, pass arguments, and access files, sockets, and ports on the host system from within a container.

The help command gives an overview of Singularity options and subcommands as follows:

$ singularity
Usage:
  singularity [global options...] <command>

Available Commands:
  build       Build a Singularity image
  cache       Manage the local cache
  capability  Manage Linux capabilities for users and groups
  config      Manage various singularity configuration (root user only)
  delete      Deletes requested image from the library
  exec        Run a command within a container
  inspect     Show metadata for an image
  instance    Manage containers running as services
  key         Manage OpenPGP keys
  oci         Manage OCI containers
  plugin      Manage Singularity plugins
  pull        Pull an image from a URI
  push        Upload image to the provided URI
  remote      Manage singularity remote endpoints
  run         Run the user-defined default command within a container
  run-help    Show the user-defined help for an image
  search      Search a Container Library for images
  shell       Run a shell within a container
  sif         siftool is a program for Singularity Image Format (SIF) file manipulation
  sign        Attach a cryptographic signature to an image
  test        Run the user-defined tests within a container
  verify      Verify cryptographic signatures attached to an image
  version     Show the version for Singularity

Run 'singularity --help' for more detailed usage information.





Information about subcommand can also be viewed with the help command.

$ singularity help pull
Pull an image from a URI

Usage:
  singularity pull [pull options...] [output file] <URI>

Description:
  The 'pull' command allows you to download or build a container from a given
  URI. Supported URIs include:

  library: Pull an image from the currently configured library
      library://user/collection/container[:tag]

  docker: Pull an image from Docker Hub
      docker://user/image:tag

  shub: Pull an image from Singularity Hub
      shub://user/image:tag

  oras: Pull a SIF image from a supporting OCI registry
      oras://registry/namespace/image:tag

  http, https: Pull an image using the http(s?) protocol
      https://library.sylabs.io/v1/imagefile/library/default/alpine:latest

Options:
      --arch string      architecture to pull from library (default "amd64")
      --dir string       download images to the specific directory
      --disable-cache    dont use cached images/blobs and dont create them
      --docker-login     login to a Docker Repository interactively
  -F, --force            overwrite an image file if it exists
  -h, --help             help for pull
      --library string   download images from the provided library
                         (default "https://library.sylabs.io")
      --no-cleanup       do NOT clean up bundle after failed build, can be
                         helpul for debugging
      --nohttps          do NOT use HTTPS with the docker:// transport
                         (useful for local docker registries without a
                         certificate)


Examples:
  From Sylabs cloud library
  $ singularity pull alpine.sif library://alpine:latest

  From Docker
  $ singularity pull tensorflow.sif docker://tensorflow/tensorflow:latest

  From Shub
  $ singularity pull singularity-images.sif shub://vsoch/singularity-images

  From supporting OCI registry (e.g. Azure Container Registry)
  $ singularity pull image.sif oras://<username>.azurecr.io/namespace/image:tag


For additional help or support, please visit https://www.sylabs.io/docs/










3. Downloading pre-built images

The easiest way to use a Singularity is to pull an existing container from one of the Registries.

You can use the pull command to download pre-built images from a number of Container Registries, here we’ll be focusing on the Singularity-Hub [https://www.singularity-hub.org] or DockerHub [https://hub.docker.com/].

Container Registries:


	library - images hosted on Sylabs Cloud


	shub - images hosted on Singularity Hub


	docker - images hosted on Docker Hub


	localimage - images saved on your machine


	yum - yum based systems such as CentOS and Scientific Linux


	debootstrap - apt based systems such as Debian and Ubuntu


	arch - Arch Linux


	busybox - BusyBox


	zypper - zypper based systems such as Suse and OpenSuse





3.1 Pulling an image from Singularity Hub

Similar to previous example, in this example I am pulling a base Ubuntu container from Singularity-Hub:

$ singularity pull shub://singularityhub/ubuntu
WARNING: Authentication token file not found : Only pulls of public images will succeed
    88.58 MiB / 88.58 MiB [===============================================================================================] 100.00% 31.86 MiB/s 2s





You can rename the container using the –name flag:

$ singularity pull --name ubuntu_test.simg shub://singularityhub/ubuntu
WARNING: Authentication token file not found : Only pulls of public images will succeed
    88.58 MiB / 88.58 MiB [===============================================================================================] 100.00% 35.12 MiB/s 2s





The above command will save the alpine image from the Container Library as alpine.sif




3.2 Pulling an image from Docker Hub

This example pulls an ubuntu:16.04 image from DockerHub and saves it to the working directory.

$ singularity pull docker://ubuntu:20.04
INFO:    Converting OCI blobs to SIF format
INFO:    Starting build...
Getting image source signatures
Copying blob 8f6b7df711c8 done
Copying blob 0703c52b8763 done
Copying blob 07304348ce1b done
Copying blob 4795dceb8869 done
Copying config 05ac933964 done
Writing manifest to image destination
Storing signatures
2020/03/09 16:14:12  info unpack layer: sha256:8f6b7df711c8a4733138390ff2aba1bfeb755bf4736c39c6e4858076c40fb5eb
2020/03/09 16:14:13  info unpack layer: sha256:0703c52b8763604318dcbb1730c82ad276a487335ecabde2f43f69a6222e8090
2020/03/09 16:14:13  info unpack layer: sha256:07304348ce1b6d24f136a3c4ebaa800297b804937a6942ce9e9fe0dac0b0ca74
2020/03/09 16:14:13  info unpack layer: sha256:4795dceb8869bdfa64f3742e1df492e6f31baf9cfc36f1a042a8f981607e99a2
INFO:    Creating SIF file...
INFO:    Build complete: ubuntu_20.04.sif






Warning

Pulling Docker images reduces reproducibility. If you were to pull a Docker image today and then wait six months and pull again, you are not guaranteed to get the same image. If any of the source layers has changed the image will be altered. If reproducibility is a priority for you, try building your images from the Container Library.






3.3 Pulling an image from Sylabs cloud library

Let’s use an easy example of alpine.sif image from the container library [https://cloud.sylabs.io/library/]

$ singularity pull library://alpine:latest
WARNING: Authentication token file not found : Only pulls of public images will succeed
INFO:    Downloading library image
2.08 MiB / 2.08 MiB [==================================================================================================] 100.00% 5.06 MiB/s 0s






Tip

You can use singularity search <name> command to locate groups, collections, and containers of interest on the Container Library








4 Interact with images

You can interact with images in several ways such as shell, exec and run.

For these examples we will use a cowsay_latest.sif image that can be pulled from the Container Library like so.

$ singularity pull library://tyson-swetnam/default/cowsay
INFO:    Downloading library image
 67.00 MiB / 67.00 MiB [=====================================================================================================] 100.00% 5.45 MiB/s 12s
WARNING: unable to verify container: cowsay_latest.sif
WARNING: Skipping container verification

tswetnam@tysons-box:~$ singularity run cowsay_latest.sif
 ________________________________________
/ Expect a letter from a friend who will \
\ ask a favor of you.                    /
 ----------------------------------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||






4.1 Shell

The shell command allows you to spawn a new shell within your container and interact with it as though it were a small virtual machine.

$ singularity shell cowsay_latest.sif
  Singularity cowsay_latest.sif:~>





The change in prompt indicates that you have entered the container (though you should not rely on that to determine whether you are in container or not).

Once inside of a Singularity container, you are the same user as you are on the host system.

$ Singularity cowsay_latest.sif:~> whoami
tswetnam






Note

shell also works with the library://, docker://, and shub:// URIs. This creates an ephemeral container that disappears when the shell is exited.






4.2 Executing commands

The exec command allows you to execute a custom command within a container by specifying the image file. For instance, to execute the cowsay program within the cowsay_latest.sif container:

$ singularity exec cowsay_latest.sif cowsay container camp rocks
______________________
< container camp rocks >
 ----------------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||






Note

exec also works with the library://, docker://, and shub:// URIs. This creates an ephemeral container that executes a command and disappears.






4.3 Running a container

Singularity containers contain runscripts [https://www.sylabs.io/guides/3.0/user-guide/definition_files.html#runscript]. These are user defined scripts that define the actions a container should perform when someone runs it. The runscript can be triggered with the run command, or simply by calling the container as though it were an executable.

singularity run lolcow_latest.sif
 _________________________________________
/  You will remember, Watson, how the     \
| dreadful business of the Abernetty      |
| family was first brought to my notice   |
| by the depth which the parsley had sunk |
| into the butter upon a hot day.         |
|                                         |
\ -- Sherlock Holmes                      /
 -----------------------------------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||






# Exercise - 1

Now that you know how to run containers from Docker, I want you to run a Singular container from simple-script Docker image that you create on Day 1 of the workshop.


Note

If you don’t have simple-script you can use my image on docker hub - https://hub.docker.com/r/upendradevisetty/simple-script-auto



Here are the brief steps:


	Go to Docker hub [https://hub.docker.com/] and look for the Dockerhub image that you built on Day 1


	Use singularity pull command to pull the Docker image onto your working directory on the Atmosphere


	Use singularity run command to launch a container from the Docker image and check to see if you get the same output that as you get from running docker run









4.3 Running a container on HPC

For running a container on HPC, you need to have Singularity module available on HPC. Let’s first look to see if the Singularity module is available on HPC or not


Warning

The following instructions are from running on UA HPC. It may or may not work on other HPC. Please refer to HPC documentation to find similar commands



$ module avail singularity
------------------------------------------ /cm/shared/uamodulefiles -------------------------------------------
singularity/2/2.6.1  singularity/3/3.2  singularity/3/3.2.1  singularity/3/3.4.2  singularity/3/3.5.3





You can see that there are three different versions of Singularity are available. For this workshop, we will use singularity/3/3.1. Let’s load it now

$ module load singularity/3/3.1













          

      

      

    

  

  
    
    Advanced Singularity
    

    

    

    

    
 
  

    
      
          
            
  
Advanced Singularity

|singularity|


5.0 Building your own Containers from scratch

In this section we’ll go over the creation of Singularity containers from a recipe file, called Singularity (equivalent to Dockerfile).




5.1 Keep track of downloaded containers

By default, Singularity uses a temporary cache to hold Docker tarballs:

$ ls ~/.singularity





You can change these by specifying the location of the cache and temporary directory on your localhost:

$ sudo mkdir tmp
$ sudo mkdir scratch

$ SINGULARITY_TMPDIR=$PWD/scratch SINGULARITY_CACHEDIR=$PWD/tmp singularity --debug pull --name ubuntu-tmpdir.sif docker://ubuntu






5.2 Building Singularity containers

Like Docker, which uses a Dockerfile to build its containers, Singularity uses a file called Singularity

When you are building locally, you can name this file whatever you wish, but a better practice is to put it in a directory and name it Singularity - as this will help later on when developing on Singularity-Hub and GitHub.
Create a container using a custom Singularity file:

$ singularity build ubuntu-latest.sif Singularity





We’ve already covered how you can pull an existing container from Docker Hub, but we can also build a Singularity container from docker using the build command:

$ sudo singularity build --sandbox ubuntu-latest/  docker://ubuntu

$ singularity shell --writable ubuntu-latest/

Singularity ubuntu-latest.sif:~> apt-get update





Does it work?

$ sudo singularity shell ubuntu-latest.sif

Singularity: Invoking an interactive shell within container...

Singularity ubuntu-latest.sif:~> apt-get update





When I try to install software to the image without sudo it is denied, because root is the owner of the container. When I use sudo I can install software to the container. The software remain in the sandbox container after closing the container and restart.

In order to make these changes permanant, I need to rebuild the sandbox as a .sif image

$ sudo singularity build ubuntu-latest.sif ubuntu-latest/






Note

Why is creating containers in this way a bad idea?








5.2.1: Exercise (~30 minutes): Create a Singularity file

SyLabs User-Guide [https://sylabs.io/guides/3.5/user-guide/]

A Singularity file can be hosted on Github and will be auto-detected by Singularity-Hub [https://www.singularity-hub.org/] when you set up your container Collection.

Building your own containers requires that you have sudo privileges - therefore you’ll need to develop these on your local machine or on a VM that you can gain root access on.


	Header




The top of the file, selects the base OS for the container, just like FROM in Docker.

Bootstrap: references another registry (e.g. docker for DockerHub, debootstrap, or shub for Singularity-Hub).

From: selects the tag name.

Bootstrap: shub
From: vsoch/hello-world





Pulls a container from Singularity Hub (< v2.6.1)

Using debootstrap with a build that uses a mirror:

BootStrap: debootstrap
OSVersion: xenial
MirrorURL: http://us.archive.ubuntu.com/ubuntu/





Using a localimage to build:

Bootstrap: localimage
From: /path/to/container/file/or/directory





Using CentOS-like container:

Bootstrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-7/7/os/x86_64/
Include:yum





Note: to use yum to build a container you should be operating on a RHEL system, or an Ubuntu system with yum installed.

The container registries which Singularity uses are listed in the Introduction Section 3.1 [https://learning.cyverse.org/projects/container_camp_workshop_2019/en/latest/singularity/singularityintro.html#downloading-pre-built-images].


	The Singularity file uses sections to specify the dependencies, environmental settings, and runscripts when it builds.




The additional sections of a Singularity file include:


	%help - create text for a help menu associated with your container


	%setup - executed on the host system outside of the container, after the base OS has been installed.


	%files - copy files from your host system into the container


	%labels - store metadata in the container


	%environment - loads environment variables at the time the container is run (not built)


	%post - set environment variables during the build


	%runscript - executes a script when the container runs


	%test - runs a test on the build of the container









Setting up Singularity file system


	Help




%help section can be as verbose as you want

Bootstrap: docker
From: ubuntu

%help
This is the container help section.






	Setup




%setup commands are executed on the localhost system outside of the container - these files could include necessary build dependencies. We can copy files to the $SINGULARITY_ROOTFS file system can be done during %setup


	Files




%files include any files that you want to copy from your localhost into the container.


	Post




%post includes all of the environment variables and dependencies that you want to see installed into the container at build time.


	Environment




%environment includes the environment variables which we want to be run when we start the container


	Runscript




%runscript does what it says, it executes a set of commands when the container is run.


Example Singularity file

Example Singularity file bootstrapping a Docker [https://hub.docker.com/_/ubuntu/] Ubuntu (16.04) image.

BootStrap: docker
From: ubuntu:18.04

%post
   apt-get -y update
   apt-get -y install fortune cowsay lolcat

%environment
   export LC_ALL=C
   export PATH=/usr/games:$PATH

%runscript
   fortune | cowsay | lolcat

%labels
   Maintainer Tyson Swetnam
   Version v0.1





Build the container:

singularity build cowsay.sif Singularity





Run the container:

singularity run cowsay.sif






Note

If you build a squashfs container, it is immutable (you cannot –writable edit it)






Cryptographic Security

Documentation [https://www.sylabs.io/guides/3.5/user-guide/signNverify.html]







          

      

      

    

  

  
    
    Singularity and High Performance Computing
    

    

    

    

    
 
  

    
      
          
            
  
Singularity and High Performance Computing

High Performance Computing resources fill an important role in research computing and can support container execution through runtimes such as Singularity or, hopefully soon, rootless Docker, among other options.

Conducting analyses on HPC clusters happens through different patterns of interaction than running analyses on a cloud VM.  When you login, you are on a node that is shared with lots of people, typically called the “login node”. Trying to run jobs on the login node is not “high performance” at all (and will likely get you an admonishing email from the system administrator). Login nodes are intended to be used for moving files, editing files, and launching jobs.

Importantly, most jobs run on an HPC cluster are neither interactive, nor realtime.  When you submit a job to the scheduler, you must tell it what resources you need (e.g. how many nodes, how much RAM, what type of nodes, and for how long) in addition to what you want to run. Then the scheduler finally has resources matching your requirements, it runs the job for you. If your request is very large, or very long, you may never make it out of the queue.

For example, on a VM if you run the command:

singularity exec docker://python:latest /usr/local/bin/python





The container will immediately start.

On an HPC system, your job submission script would look something like:

#!/bin/bash
#
#SBATCH -J myjob                      # Job name
#SBATCH -o output.%j                  # Name of stdout output file (%j expands to jobId)
#SBATCH -p development                # Queue name
#SBATCH -N 1                          # Total number of nodes requested (68 cores/node)
#SBATCH -n 17                         # Total number of mpi tasks requested
#SBATCH -t 02:00:00                   # Run time (hh:mm:ss) - 4 hours

module load singularity/3/3.1
singularity exec docker://python:latest /usr/local/bin/python





This example is for the Slurm scheduler.  Each of the #SBATCH lines looks like a comment to the bash kernel, but the scheduler reads all those lines to know what resources to reserve for you.

It is usually possible to get an interactive session as well, by using an interactive flag, -i.


Note

Every HPC cluster is a little different, but they almost universally have a “User’s Guide” that serves both as a quick reference for helpful commands and contains guidelines for how to be a “good citizen” while using the system.  For TACC’s Stampede2 system, see the  user guide [https://portal.tacc.utexas.edu/user-guides/stampede2]. For The University of Arizona, see the user guide [https://docs.hpc.arizona.edu/].




How do HPC systems fit into the development workflow?

A few things to consider when using HPC systems:


	Using sudo is not allowed on HPC systems, and building a Singularity container from scratch requires sudo.  That means you have to build your containers on a different development system.  You can pull a docker image on HPC systems


	If you need to edit text files, command line text editors don’t support using a mouse, so working efficiently has a learning curve.  There are text editors that support editing files over SSH.  This lets you use a local text editor and just save the changes to the HPC system.




These constraints make HPC systems perfectly suitable for execution environments, but currently a limiting choice for a development environment.  We usually recommend your local laptop or a VM as a development environment where you can iterate on your code rapidly and test container building and execution.




Singularity and MPI

Singularity supports MPI fairly well.  Since (by default) the network is the same insde and outside the container, the communication between containers usually just works.  The more complicated bit is making sure that the container has the right set of MPI libraries.  MPI is an open specification, but there are several implementations (OpenMPI, MVAPICH2, and Intel MPI to name three) with some non-overlapping feature sets.  If the host and container are running different MPI implementations, or even different versions of the same implementation, hilarity may ensue.

The general rule is that you want the version of MPI inside the container to be the same version or newer than the host.  You may be thinking that this is not good for the portability of your container, and you are right.  Containerizing MPI applications is not terribly difficult with Singularity, but it comes at the cost of additional requirements for the host system.


Note

Many HPC Systems, like Stampede2 at TACC and Ocelote at UAHPC, have high-speed, low-latency networks that have special drivers.  Infiniband, Ares, and OmniPath are three different specs for these types of networks.  When running MPI jobs, if the container doesn’t have the right libraries, it won’t be able to use those special interconnects to communicate between nodes.






Base Docker images

Depending on the system you will use, you may have to build your own MPI enabled Singularity images (to get the versions to match).

When running at TACC, there is a set of curated Docker images for use in the FROM line of your own containers.  You can see a list of availabe images at https://hub.docker.com/u/tacc

Specifically, you can use the tacc/tacc-ubuntu18-mvapich2.3-psm2 image to satisfy the MPI architecture and version requirements for running on Stampede2.

Because you may have to build your own MPI enabled Singularity images (to get the versions to match), here is a 3.1 compatible example of what it may look like:

You could also build in everything in a Dockerfile and convert the image to Singularity at the end.

Once you have a working MPI container, invoking it would look something like:

mpirun -np 4 singularity exec ./mycontainer.sif /app.py arg1 arg2





This will use the host MPI libraries to run in parallel, and assuming the image has what it needs, can work across many nodes.

For a single node, you can also use the container MPI to run in parallel (usually you don’t want this)

singularity exec ./mycontainer.sif mpirun -np 4 /app.py arg1 arg2








Example Containerized MPI App

In your Docker development environment, make a new directory in which to build up a new image and download (or copy and paste) two files in that directory:

https://raw.githubusercontent.com/TACC/containers_at_tacc/master/docs/scripts/Dockerfile.mpi

https://raw.githubusercontent.com/TACC/containers_at_tacc/master/docs/scripts/pi-mpi.py

Take a look at both files.  pi-mpi.py is a simple MPI Python script that approximates pi (very inefficiently) by random sampling.  Dockerfile.mpi is an updated Dockerfile that uses the TACC base image to satisfy all the MPI requirements on Stampede2.

Next, try building the new container.

$ docker build -t USERNAME/pi-estimator:0.1-mpi -f Dockerfile.mpi .





Don’t forget to change USERNAME to your DockerHub username.

Once you have successfully built an image, push it up to DockerHub with the docker push command so that we can pull it back down on Stampede2.




Running an MPI Container on Stampede2

To test, we can grab an interactive session that has two nodes.  That way we can see if we can make the two nodes work together. On TACC systems, the “idev” command will start an interactive session on a compute node:

$ idev -m 60 -p normal -N 2 -n 128





Once you have nodes at your disposal and a container on DockerHub, invoking it would look something like:

module load tacc-singularity
cd $WORK
singularity pull docker://USERNAME/pi-estimator:0.1-mpi
time singularity exec pi-estimator_0.1-mpi.sif pi-mpi.py 10000000
time ibrun singularity exec pi-estimator_0.1-mpi.sif pi-mpi.py 10000000






Note

TACC uses a command called ibrun on all of its systems that configures MPI to use the high-speed, low-latency network.  If you are familiar with MPI, this is the functional equivalent to mpirun



The first singularity exec pi-estimator_0.1-mpi.sif pi-mpi.py 10000000 command will use 1 CPU core to sample ten million times.  The second command, using ibrun will run 128 processes that sample ten million times each and pass their results back to the “rank 0” MPI process to merge the results.

This will use the host MPI libraries to run in parallel, and assuming the image has what it needs, can work across many nodes.

As an aside, for a single node you can also use the container MPI to run in parallel (but usually you don’t want this).

When you are don with your interactive session, don’t forget to exit to end the session and go back to the login node.




Singularity and GPU Computing

GPU support in Singularity is very good.

Since Singularity supported docker containers, it has been fairly simple to utilize GPUs for machine learning code like TensorFlow. We will not do this as a hands-on exercise, but in general the procedule is as follows.

# Load the singularity module
module load singularity/3/3.1

# Pull your image
singularity pull docker://nvidia/caffe:latest

singularity exec --nv caffe-latest.sif caffe device_query -gpu 0





Please note that the –nv flag specifically passes the GPU drivers into the container. If you leave it out, the GPU will not be detected.

# this is missing the --nv flag and will not work
singularity exec caffe-latest.sif caffe device_query -gpu 0





The main requirement for GPU containers to work is that the version of the host drivers matches the major version of the library inside the container.  So, for example, if CUDA 10 is on the host, the container needs to use CUDA 10 internally.

For TensorFlow, you can directly pull their latest GPU image and utilize it as follows.

# Change to your $WORK directory
cd $WORK
#Get the software
git clone https://github.com/tensorflow/models.git ~/models
# Pull the image
singularity pull docker://tensorflow/tensorflow:latest-gpu
# Run the code
singularity exec --nv tensorflow-latest-gpu.sif python $HOME/models/tutorials/image/mnist/convolutional.py





The University of Arizona HPS Singularity examples [https://docs.hpc.arizona.edu/display/UAHPC/Containers].







          

      

      

    

  

  
    
    BioContainers
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]


BioContainers

BioContainers [https://biocontainers.pro/#/] is a community-driven project that provides the infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with special focus in proteomics, genomics, transcriptomics and metabolomics. BioContainers is based on the popular frameworks of Docker.

[image: biocontainerlogo]

BioContainers Goals:


	Provide a base specification and images to easily build and deploy new bioinformatics/proteomics software including the source and examples.


	Provide a series of containers ready to be used by the bioinformatics community (https://github.com/BioContainers/containers).


	Define a set of guidelines and specifications to build a standardized container that can be used in combination with other containers and bioinformatics tools.


	Define a complete infrastructure to develop, deploy and test new bioinformatics containers using continuous integration suites such as Travis Continuous Integration (https://travisci. org/), Shippable (https://app.shippable.com/) or manually built solutions.


	Provide support and help to the bioinformatics community to deploy new containers for researchers that do not have bioinformatics support.


	Provide guidelines and help on how to create reproducible pipelines by defining, reusing and reporting specific container versions which will consistently produce the exact same result and always be available in the history of the container.


	Coordinate and integrate developers and bioinformaticians to produce best practice of documentation and software development.





Introduction to Bioconda

[image: biocondalogo]

Bioconda [https://bioconda.github.io/] is a channel for the conda package manager specializing in bioinformatics software. It consists of:


	A repository of recipes hosted on GitHub [https://github.com/bioconda/bioconda-recipes/tree/master/recipes]


	A build system that turns these recipes into conda packages


	A repository of > 6000 bioinformatics packages ready to use with a simple conda install command


	Each package added to Bioconda also has a corresponding Docker BioContainer automatically created and uploaded to Quay.io


	Over 600 contributors that add, modify, update and maintain the recipes





Note

Recipe vs package
A recipe is a directory containing a small set of files that defines name, version, dependencies, and URL for source code. A recipe
typically contains a meta.yaml file that defines these settings and a build.sh script that builds the software. A recipe is
converted into a package by running “conda-build” on the recipe.
A package is a bgzipped tar file (.tar.bz2) that contains the built software. Packages are uploaded to anaconda.org so that users can install them with “conda install” command.



You can contribute [https://bioconda.github.io/contributing.html] to the Bioconda project by building your own packages. Each package will also be made available as a BioContainer at Quay.io [https://quay.io/organization/biocontainers].




Glossary


	Image: self-contained, read-only ‘snapshot’ of your applications and packages, with all their dependencies


	Container: a running instance of your image


	Image registry: a storage and content delivery system, holding named images, available in different tagged versions


	Docker: a program that runs and handles life-cycle of containers and images


	CyVerse tool: Software program that is integrated into the back end of the DE for use in DE apps


	CyVerse app: graphic interface of a tool made available for use in the DE







Where to Get a BioContainer

Images are made publicly available through image registries. There are several different image registries that provide access to BioContainers. The three major registries are detailed here.


The BioContainers Registry

BioContainers Registry [https://biocontainers.pro/#/registry] UI provides the interface to search, tag, and document BioContainers across all the registries. Which means that if a BioContainer exists you can find it here.

To find the tool you want to use just search for it by name in the search box at the top of the registry page. The BioContainers registry returns partial matches and matches to the tool description. So, if you want to find all the tools relevant to Nanopore analysis you can search for ‘nanopore’.

[image: biocontainersregistry]

If the tool you are looking for is already available as a BioContainer click on that tile in the search results. This will display all the available BioContainers and Conda packages for this tool (ie. different versions of the tool). Choose the version of the tool you want to use (when in doubt, choose the most recent version). Select the icon at the right to copy the ‘docker pull’ command for that version.

[image: registrytags]


Note

You want the docker images, not the Conda packages. Conda packages are not containers.




Note

If your tool is not already available as a BioContainer (ie. your search returned nothing) proceed to the How to Request a BioContainer or How to Build a BioContainer section below.






Quay

Quay [https://quay.io/] is another image registry. Unlike the BioContainers Registry, Quay.io is not specific to BioContainers. Anyone (including you) can create an account at Quay.io and host your own images but an account is not necessary to use BioContainers (or other publicly available images).

Although anyone can create a BioContainer, the majority of BioContainers are created by the Bioconda project. Every Bioconda package has a corresponding BioContainer available at Quay.io. From the Quay.io page search for the tool you want by name.


Note

The Quay.io search will only find those tools with an exact match of the name (unlike the BioContainers Registry).




Important

Other users may also have images available that contain your tool. Be sure to choose the image that is part of the ‘biocontainers’ organization. BioContainers is a trusted source and you know what you’re getting.



[image: quayio]


Note

If your search yields no results then double-check by searching the BioContainers Registry (just to be sure). If your tool isn’t available as a BioContainer then proceed to the How to request a BioContainer or How to build a BioContainer section below.



From the repo page, choose the ‘tags’ tab on the left side of the screen and you will get a list of the available images. Unlike the BioContainers Registry, Quay.io will not display conda packages in the list. Again, when in doubt choose the most recent version available for your tool. Click on the ‘fetch tag’ icon to the right of your chosen version. Then select ‘Docker pull (by tag)’ from the drop-down and copy the ‘docker pull’ command.

[image: quayiotags]

[image: quayiopull]




DockerHub

DockerHub [https://hub.docker.com/] is the most well-known and popular image registry for Docker containers. Like Quay.io, you can create an account at DockerHub and host your own images but an account is not necessary to use BioContainers (or other publicly available images).

There are fewer BioContainers images available at DockerHub than the other two registries. You can see them all by searching for ‘biocontainers’ in the search bar of the DockerHub page.

[image: dockerhub]


Note

You can also search for the name of the tool you want. Be sure that you choose images the belong to the BioContainers organization. There will be many other options available on DockerHub. BioContainers is a trusted source.



The second image in this search results list is ‘vcftools’. Select ‘vcftools’ and you will see the repo page for this tool. The ‘docker pull’ command can be copied from the overview page; however, there is no tag specified. To see the available versions, select the tags tab at the top of the page. You will need to supply the tag of the version you want following a colon at the end of your docker pull command to get a specific version.

$ docker pull biocontainers/vcftools:v0.1.14_cv2





While DockerHub offers fewer BioContainers than the other registries it does offer some advantages for those who want to build their own BioContainers.


	The first image in the  search results for ‘biocontainers’ is the ‘biocontainers base image’. This image can be built upon if you wish to build your own BioContainers.


	Dockerfiles are available for these containers so you can see exactly how they were built.




For more information on building your own BioContainer see How to build a BioContainer section below.






How to Request a BioContainer

If the tool you want isn’t available as a BioContainer you can request that one be built for you.
Users can request a container by opening an issue in the containers repository [http://github.com/BioContainers/containers/issues]

[image: requestcontainer]

The issue should contain:


	the name of the software


	the url of the code or binary to be packaged


	information about the software


	tag the issue with the ‘Container Request’ label




When the container is deployed and fully functional, the issue will be closed by the developer or the contributor to BioContainers. When a container is deployed and the developer closes the issue in GitHub the user receives a notification that the container is ready.You can the find your container at Quay.io and use the ‘docker pull’ command to run it as you would any other container.




How to Use a BioContainer

To run your BioContainer you will need a computer with Docker installed.


How to Install Docker

Installing Docker on your computer takes a little time but it is reasonably straight forward and it is a one-time setup. Docker can be installed by following these directions. [https://learning.cyverse.org/projects/container_camp_workshop_2019/en/latest/docker/dockerintro.html]

Docker installation is much easier on an Atmosphere instance with the ‘ezd’ command.

$ ezd








Get Data to Use with Your Container

Set up iCommands. [https://learning.cyverse.org/projects/atmosphere-guide/en/latest/step4.html]

$ cd Desktop
$ iget /iplant/home/shared/iplantcollaborative/example_data/porechop/SRR6059710.fastq








Use ‘docker pull’ to Get the Image

First, you will need to pull the image from the registry onto your computer. Use the ‘docker pull’ command you copied from the registry above (Where to Get a BioContainer).

$ docker pull quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3






Note

If you are working on a system for which you don’t have root permissions you will need to use ‘sudo’ and provide your password. Like this:



$ sudo docker pull quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3





[image: pullquayio]




Use the ‘docker run’ Command to Run the Container

The easiest way to test that the container will run is to run the help command for the tool. In this case ‘-h’ is the help command.

sudo docker run --rm -v $(pwd):/working-dir -w /working-dir --entrypoint="porechop" quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 -h





From the result we are able to see the only required option is ‘-i INPUT’. Options in [square brackets] are not required.

Now we can run the container with our data file to see the output.

sudo docker run --rm -v $(pwd):/working-dir -w /working-dir --entrypoint="porechop" quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 -i SRR6059710.fastq -o porechop_output.fastq





We can break the command down into pieces so it is easier to read (the backslash represents where we have broken the line).

sudo \
docker run \
--rm \
-v $(pwd):/working-dir \
-w /working-dir \
--entrypoint="porechop" \
quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3 \
-i SRR6059710.fastq \
-o porechop_out.fastq








What it All Means


	‘sudo’ allows you to run the container with ‘root’ permissions–only required if you don’t have root permissions on your machine


	‘docker run’ tells docker to run the container


	‘–rm’ removes the container (not the image) from your system when the analysis is complete


	‘-v’ mounts a local directory into a directory within the container


	‘-w’ specifies the working directory within the container


	‘–entrypoint’ tells the container what to do (usually the name of the tool; the command you would use to run the tool on the command line)


	‘quay.io/biocontainers/porechop:0.2.3_seqan2.1.1–py36h2d50403_3’ is the name of the image we pulled from Quay.io


	‘-i’ is the argument for the input file (FASTQ) for Porechop


	‘-o’ is the arguemnt for the output file (trimmed FASTQ) for Porechop





Important

You must supply an entrypoint on the command line when you run a BioContainer. It is possible to build entrypoints into a container but that is not he case with BioContainers.



[image: porechoprun]
[image: porechoptrim]
[image: porechopdone]

The output from Porechop is saved into the working directory within the container. We ran the container we mounted our current local working directory into the working directory within the container. The analysis has finished, the container has been removed (remember –rm) and now we should find our outputs in our local current working directory.

List the files:

$ ls -l





[image: porechopout]

You can see the ‘porechop_out.fastq’ file is in our current working directory. Notice that the this file is owned by ‘root’. This is because Docker containers always run as ‘root’.

At this point you can run your container on any system with Docker installed. To use this container on an HPC system you will need to use Singularity (rather than Docker) to run your container. For more information about running Docker containers with Singularity see the Singularity documentation [https://singularity.lbl.gov/quickstart]


Note

Reporting a problem with a container:
If you find a problem with a BioContainer an issue should be opened in the containers repository [http://github.com/BioContainers/containers/issues], you should use the ‘broken’ tag (see tags). Developers of the project will pick-up the issue and deploy a new version of the container. A message will be delivered when the container has been fixed.








How to Build a BioContainer

For more information on building Bioconda BioContainers see the Bioconda docmentation [https://bioconda.github.io/contributing.html]

For more information on building Docker BioContainers see BioContainers contribution guidelines [https://github.com/BioContainers/specs#33-how-to-create-a-docker-based-biocontainer].




Useful Links


	BioContainers [https://biocontainers.pro/#/]


	Bioconda [https://bioconda.github.io/]


	Bioconda GitHub [https://github.com/bioconda/bioconda-recipes/tree/master/recipes]


	Quay.io BioContainers organization [https://quay.io/organization/biocontainers]


	BioContainers Registry [https://biocontainers.pro/#/registry]


	DockerHub [https://hub.docker.com/]


	Request a BioContainer [http://github.com/BioContainers/containers/issues]


	Singularity documentation [https://singularity.lbl.gov/quickstart]


	BioContainers contribution guidelines [https://github.com/BioContainers/specs#33-how-to-create-a-docker-based-biocontainer]






Fix or improve this documentation:


	On Github: Github Repo Link


	Send feedback: Tutorials@CyVerse.org












          

      

      

    

  

  
    
    Containerized Workflows
    

    

    

    

    
 
  

    
      
          
            
  
Containerized Workflows


Workflow Management Using Snakemake

[image: snakemake]

In this breakout session you’ll learn about snakemake [https://snakemake.readthedocs.io/en/stable/], a workflow management system consisting of a text-based workflow specification language and a scalable execution environment. You will be introduced to the Snakemake workflow definition language and how to use the execution environment to scale workflows to compute servers and clusters while adapting to hardware specific constraints.

Snakemake is designed specifically for computationally intensive and/or complex data analysis pipelines. The name is a reference to the programming language Python, which forms the basis for the Snakemake syntax.

See Snakemake Slides here [https://slides.com/johanneskoester/snakemake-tutorial#/] and pdf [https://github.com/CyVerse-learning-materials/container_camp_workshop_2020/blob/master/breakout/snakemake.pdf].






SETUP


	Right-Click the button below and login to CyVerse Discovery Environment for a quick launch of Snakemake VICE Jupyter lab app.


[image: smake-vice] [https://de.cyverse.org/de/?type=quick-launch&quick-launch-id=7a62a49e-7fee-4822-b128-a1b2485e2941&app-id=9e989f50-6109-11ea-ab9d-008cfa5ae621]






	To run Snakemake inside a docker container, run the following on your instance with docker installed:




docker run -it --entrypoint bash cyversevice/jupyterlab-snakemake






	Click here [https://nbis-reproducible-research.readthedocs.io/en/devel/snakemake/] for a Snakemake tutorial by NBISweden [https://nbis-reproducible-research.readthedocs.io/en/devel/].


	Clone RNAseq Snakemake tutorial repository




git clone https://github.com/NBISweden/workshop-reproducible-research.git

cd workshop-reproducible-research/docker/

git checkout devel

ls






	Dry-Run RNAseq Snakefile




snakemake -n






	Run RNAseq Snakefile




snakemake








Why Snakemake

From where and how to get data for your analysis, to where and how to treat the outputs, workflow managers can help you achieve better scientific reproducibility and scalability. Once you learn to properly use Snakemake (or similar workflow management tools), keeping track of and sharing your work becomes second nature, not only saving you time whenever you need to re-run all or part of an analysis but helping you reduce errors that naturally get introduced whenever a non-automated activity is done (i.e., as part of the human condition of doing computational science and not being a bot!).




Other Workflow Managers


	CCTools [https://cctools.readthedocs.io/en/latest/] offers Makeflow [https://cctools.readthedocs.io/en/latest/makeflow/] a workflow management system similar to Snakemake and also WorkQueue [https://cctools.readthedocs.io/en/latest/work_queue/] for scaling-up through Distributed Computing for customized and efficient utilization of resources. Read more here [http://ccl.cse.nd.edu/software/tutorials/acic19/].








          

      

      

    

  

  
    
    Docker for Data Science
    

    

    

    

    
 
  

    
      
          
            
  
Docker for Data Science

For domain scientists (and budding data scientists), running a container already equipped with the libraries and tools needed for a particular analysis eliminates the need to spend hours debugging packages across different environments or configuring custom environments.


  
    
    Booting a CyVerse Atmosphere instance
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

|Home_Icon|_
Learning Center Home [http://learning.cyverse.org/]


Booting a CyVerse Atmosphere instance

In this session, we will walk through how to start up a running computer (an “instance”) on the CyVerse Atmosphere Cloud service. Here is the Atmosphere manual [https://wiki.cyverse.org/wiki/display/atmman/Atmosphere+Manual+Table+of+Contents] if you are interested in learning more about CyVerse Atmosphere

Below, we’ve provided screenshots of the whole process. You can click on them to zoom in a bit. The important areas to fill in are highlighted.

First, go to the Atmosphere [https://atmo.cyverse.org] application and then click login


Important

You will need to have access to the Atmosphere workshop cloud. If you are unable to log-in for some reason, please let us know and we will fix it immediately.




	Fill in the username and password and click LOGIN




Fill in the username, which is your CyVerse username, and then enter the password which is your CyVerse password.

[image: atmo-1.1]


	Select Projects and Create New Project





	Now, this is something you only need to do once.


	We’ll do this with Projects, which gives you a bit of a workspace in which to keep things that belong to you.


	Click on the Projects tab on the top and then click CREATE NEW PROJECT


	Enter the name CC2019 into the Project Name box, and something simple like Container Camp Workshop 2019 into the description. Then click create.




[image: atmo_cp]


	Select the newly created project





	Click on your newly created project!


	Now, click New and then Instance from the dropdown menu to start up a new virtual machine.




[image: atmo_launch0]


	Find the Ubuntu 18.04 image, click on it




[image: atmo_launch1]


	Name it something simple such as workshop tutorial and select small1 (CPU: 2, Mem: 8GB, Disk: 30GB).


	Leave rest of the fields as default.




[image: atmo_launch]


	Wait for it to become active


	It will now be booting up! This will take 2-10 minutes, depending. Just wait! Don’t reload or do anything.




[image: atmo-6]


	Click on your new instance to get more information!


	Now, you can either click Open Web Shell, or, you can ssh in with your CyVerse username on the IP address of the machine. For using Open Web Shell, click on the name of the instance and it will take you to the next screen. You’ll find the Open Web Shell underneath the Actions menu on the right.




Deleting your instance


	To completely remove your instance, you can select the Delete buttom from the instance Actions page.


	This will open up a dialogue window. Select the Yes, delete this instance button.




[image: atmo-8]

Before deleting an instance make sure you backup your data, once the instance is deleted, there is no way you can get the data back. It is recommended to attach the volume to the instance [https://wiki.cyverse.org/wiki/display/atmman/Attaching+and+Detaching+Volumes] and do your analysis there.


	It may take Atmosphere a few minutes to process your request. The instance should disappear from the project when it has been successfully deleted.




[image: atmo-9]


Note

It is advisable to delete the machine if you are not planning to use it in future to save valuable resources. However if you want to use it in future, you can suspend it.







          

      

      

    

  

  
    
    Tool integration in the Discovery Environment (DE)
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]

[image: Home_Icon2] [http://learning.cyverse.org/] Learning Center Home [http://learning.cyverse.org/]


Tool integration in the Discovery Environment (DE)


Why use the DE?


	Use hundreds of bioinformatics Apps without the command line (or with, if you prefer)


	Batch and interactive modes


	Seamlessly integrated with data and high performance computing – not dependent on your hardware


	Create and publish Apps and workflows so anyone can use them


	Analysis history and provenance – “avoid forensic bioinformatics”


	Securely and easily manage, share, and publish data







Types of apps

CyVerse tool: Software program that is integrated into the back end of the DE for use in DE apps

CyVerse app: graphic interface of a tool made available for use in the DE



	Executable: user starts an analysis and when the analysis finishes they can find the output files in their ‘Analyses’ folder



	DE: run locally on our cluster


	HPC: labeled as ‘Agave’ in the DE. Run on XSEDE resources at Texas Advanced Computing Center (TACC)


	OSG: run on the Open Science Grid









	Interactive: also called Visual and Interactive Computing Environment (VICE). Allows users to open Integrated Development Environments (IDEs) including RStudio, Project Jupyter and RShiny and work interactively within them.







The (containerized) tool must be integrated into the Cyverse DE first. Then an app (interface) can be built for that tool.




Tool Integration into the DE




Building an App for Your Tool

You can build an app for any tool that:


	is private to you


	is shared with you


	is public





Note

It is a good idea to check to see if the tool you want is already integrated before you start. The tool my be there already and you can build an app using it.



In the ‘Manage Tools’ window search for ‘porechop’ in the search bar at the top of the window. Select the porechop public tool and choose ‘Use in App’ from the ‘Tools’ menu

[image: useinapp]

This will open the ‘Create App’ window. The tool to use will be pre-populated. Choose an informative app name and description (eg. tool name and version). Apps features can be added by dragging the feature from the left pane into the center pane.

[image: draglefttocenter]

You can edit the details of an app feature by selecting it in the center pane and editing in the right pane. Divide the app into sections appropriate for that tool (input, options and output are usually sufficient sections for simple apps).

[image: adddetailright]

For each option you add, you will need to specify what the option is, the flag (if there is one) and whether that option is required. If an option is not required be sure to check the ‘exclude if nothing is entered’ box. For tools that have positional agruments (no flags, eg. -z) you can modify the order of the commands by clicking the ‘command line order’ at the top of the window.

[image: commandlineorder]

As you add options to your app you will see in the bottom pane (command line view) what the command would look like on the command line.

[image: commandlineexp]

Although it is best to add all of the options for your tool, as it makes the app the most useful, you can expose as many or as few options as you like (as long as you add all the required options). Once you have finished adding options click save and close your app.

Now test your app with appropriate data. Your app can now be found in the ‘My apps in development’ category of the ‘Apps’ window (which displays by default).

[image: myappsdev]

Once you know your app works correctly you can share or publish it as you wish.
Public apps must have example data located in an appropriately named folder here:

/iplant/home/shared/iplantcollaborative/example_data





All public apps also have a brief documentation page on the CyVerse Wiki [https://wiki.cyverse.org/wiki/display/DEapps/List+of+Applications]

To publish your app click on ‘Share’ at the top of the ‘Apps’ window and select ‘Make public’. You will need to supply a:


	Topic (eg. genomics)


	Operation (eg. assembly)


	location of the example data


	brief description of inputs, required options and outputs


	link to CyVerse Wiki documentation page


	link to docmentation for the tool (provided by the developers)







Additional resources



	DE Guide [https://learning.cyverse.org/projects/discovery-environment-guide/en/latest/]


	DE Manual [https://wiki.cyverse.org/wiki/display/DEmanual/Table+of+Contents]


	VICE Manual [https://learning.cyverse.org/projects/vice/en/latest/]


	Using CyVerse for a shared project [https://learning.cyverse.org/projects/cyverse-group-project-quickstart/en/latest/index.html?highlight=group%20project]









Fix or improve this documentation:


	On Github: Github Repo Link


	Send feedback: Tutorials@CyVerse.org














          

      

      

    

  

  
    
    Deploying apps in CyVerse Discovery Environment
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse_logo2] [http://learning.cyverse.org/]


Deploying apps in CyVerse Discovery Environment

The CyVerse Discovery Environment (DE) [https://de.cyverse.org] provides a simple yet powerful web portal for managing data, analyses, and workflows. The DE uses containers (both Docker and Singularity) to support customizable, non-interactive, interactive reproducible workflows using data stored in the CyVerse Data Store.

This paper [https://f1000research.com/articles/5-1442/v3] will guide you to bring your dockerized tools into CyVerse DE.

[image: f1000]


Important

Significant changes have been made as to how you can bring your tools into DE and so we are working on a separate paper that will show all those changes. Meanwhile you can follow the below tutorial for integrating your tools.



Here are the basic steps for deploying Docker images as apps in DE. For this tutorial I am going to show an example of Tensor image classifier [https://github.com/upendrak/tensorflow_image_classifier]


	Build and test your Docker images


	Push your Docker image to Dockerhub


	Add Docker images as tool in DE


	Create an App UI for the tool in DE


	Test the app using appropriate test data in DE





Warning

If you already have your own Docker image or a Docker image of interest is already hosted on a public registry(s) (Dockerhub or quay.io or some other public repository), then you can skip to Step 3



1. Build and test your Docker images

The first step is to dockerize your tool or software of interest. Detailed steps of how to dockerize your tool and test your dockerized images can be found in sections intro to docker and advanced docker.

For this tutorial I will use the tensorflow image classifier docker image that I built using this code [https://github.com/upendrak/tensorflow_image_classifier].

Building the Docker image from the Dockerfile

$ git clone https://github.com/upendrak/tensorflow_image_classifier && cd tensorflow_image_classifier

$ docker build -t tensorflow_up:1.0 .





Testing Docker image with test data

$ docker run --rm -v $(pwd):/data -w /data tensorflow_up:1.0 sample_data/16401288243_36112bd52f_m.jpg





This generates a file called 16401288243_36112bd52f_m.out that consits of classification percentages such as

daisy (score = 0.99785)
bee (score = 0.00009)
speedboat (score = 0.00008)
mitten (score = 0.00006)
sulphur butterfly, sulfur butterfly (score = 0.00004)





2. Push your Docker image to public repositories

Once the Docker image works as expected then either you set-up an automated build (recommended) or directly push the build Docker image to dockerhub [http://hub.docker.com]. Here are the brief steps for automated build. See Advanced Docker section for more details.

2.1. Login to hub.docker.com and select Create Repository

[image: auto-1]

2.2. Give a name to the repository. In here, I have given tensorflow_image_classifier as the name

[image: auto-2]

2.3. Use the default visibility (Public in this case). Under Build settings, click the github octocat symbol which will ask you to authenticate github. Upon authentication, you’ll be able to select the tensorflow_image_classifier github repo. Under Build rules, keep the source type as Branch, source as master, Docker Tag as 1.0 and the rest as defaults. Finally click “Create and Build” to start the building process

[image: auto-3]

2.4. It takes few minutes to hours (depending on the size of the image) and finally when everything works well, you’ll see the SUCCESS message as shown here

[image: auto-4]

Here is the docker image built using automated build for the tensorflow image classifier on Dockerhub [https://hub.docker.com/r/upendradevisetty/tensorflow_image_classifier]

3. Add Docker images as tool in DE

All tools now run installed as Docker images in the DE. Once the software is dockerized and available as Docker images on dockerhub then you can add those docker images as a tool in DE.


Warning

Check if the tool and correct version are already installed in the DE by following the steps below.


	Log in to the Discovery Environment by going to https://de.cyverse.org/de/, entering your CyVerse username and password, and clicking LOGIN. If you have not already done so, you will need to sign up for a CyVerse account.


	Click the Apps window to open the Apps window.


	Click the Manage Tools button on the top-right of the Apps window.


	In the search tools field, enter the first few letters of the tool name and then click enter.


	If the tool is available then you can skip to skip to step 3 for creating a UI for that tool.






If the tool is not available in DE then do the following:


	Click open the Tools tab in Manage Tools window and then click Add tools button


	Then enter the fields about your tool and then click “Ok”.



	Tool Name: It should be the name of the tool. For example “tensorflow_image_classifier”.


	Description: A short Description about the tool. For example “Tensorflow image classifier”.


	Version: What is the version number of the tool. For example “1.0”.


	Image name: Name of the Docker image on dockerhub or quay.io. For example “upendradevisetty/tensorflow_image_classifier”.


	Tag: What is the tag of your Docker image. This is optional but is highly recommended. If non specified, it will pull the default tag latest. If the latest tag is not avaiable the tool integration will fail. For example “1.0”


	Entrypoint: Do you want a entrypoint for your Docker image? This optional.


	Docker Hub URL: URL of the Dockerhub docker image. Option but is recommended. In this example “”.











[image: img_building_1]


	If there is no error message, you have successfully integrated the tool.




4. Create an App UI for the tool in DE

Once the Dockerized tool is added, you can create the app UI for the tool. The Create App window consists of four distinct sections:


	The first section contains the different app items that can be added to your interface. To add an app item, select the one to use (hover over the object name for a brief description) and drag it into position in the middle section.


	The second section is the landing place for the objects you dragged and dropped from the left section, and it updates to display how the app will look when presented to a user.


	The third section (Details) displays all of the available properties for the selected item. As you customize the app in this section, the middle section updates dynamically so you can see how it will look and act.


	Finally, the fourth section at the bottom (Command line view) contains the command-line commands for the current item’s properties. As you update the properties in the Details section, the command-line view updates as well to let you make sure that you are passing the correct arguments in the correct order.




[image: img_building_4]


Note

Creating a new app interface requires that you know how to use the tool. With that knowledge, you create the interface according to how you want options to be displayed to a user.



Here is an example of the Tensorflow image classifier - 1.0 app UI in DE

[image: img_building_3]

5. Test the app using appropriate test data in DE

After creating the new app according to your design, test your app in the Your Apps under development folder in the DE using appropriate test data to make sure it works properly.

For testing, we’ll use the the same image that we used earlier.

[image: img_building_9]


	First open the Tensorflow image classifier - 1.0 app in the app window




[image: img_building_5]


	Next browse the test file in the app and click launch analysis




[image: img_building_6]


	After the analysis is completed, open the folder and check to see if the image classifier correctly predicts




[image: img_building_8]

Congrats!!! It works. The image classifier correctly predicts that the image is a daisy..


	If your app works the way you expect it to you can share your app or make the app public


	If your app doesn’t work, then you may need to make changes to the app UI or you need to make changes to your Docker image. If you make changes to the Docker image, then you don’t need to create a new app UI again as the Docker image updates will be propagated automatically.








          

      

      

    

  

  
    
    Deploying interactive apps in CyVerse Discovery Environment
    

    

    

    

    
 
  

    
      
          
            
  [image: CyVerse logo] [http://learning.cyverse.org/]


Deploying interactive apps in CyVerse Discovery Environment

The current apps in the DE are non-interactive, meaning the user selects parameters and data for a particular analysis, and submits the job for execution on platforms (Condor, HPC via Agave). When the process completes, the user is notified and they can view their analysis results in a folder. Any desired changes in results requires the user to change analysis parameters and run the job again to full completion. But exploratory data analysis (EDA) requires user to click and interact with running applications (i.e Data Scientists need a Workbench). Availability of computational notebooks (Jupyter, Zepplin) and Rstudio’s Shiny allow users to readily share analysis in a reproducible manner and technologies like Javascript, WebGL, and others are making the web browser an extremely capable workbench

VICE (Visual Interactive Computing Environment) lets users interact with their data and do analyses in their favorite programming language in one place in an iterative way. Researchers can now explore their datasets interactively by easily changing parameters of selected analysis applications without having to download data from storage to an active workspace.

Here are the basic steps for deploying Docker images as interactive apps (VICE) in DE. For this tutorial I am going to show an example of Keras wine classifier [https://github.com/upendrak/keras_wine]

First log-in CyVerse DE [https://de.cyverse.org/de/]


1. Search JupyterLab App

After you login to DE, open the Apps window and search the JupyterLab with key word JupyterLab.

[image: jupyter1-1]




2. Launch analysis

Launch the JupyterLab app by clicking launch analysis. Before you launch, you can either drag and drop or browse the files that you want to use with Jupyter-lab. There is currently no restriction of how many files and size of the files that can be launched along with JupyterLab app.

[image: jupyter1-2]

[image: jupyter1-3]


Note

The first two steps of launching apps are same as with other DE apps.






3. Navigate to JupyterLab url

Unlike regular DE apps once the analysis starts running you will get url. Clicking on the “Access your running Analysis here” url will redirect you to a page with a welcome message

[image: jupyter1-9]

After it finished loading your app, the JupyterLab Interface automatically appears in your browser.

[image: jupyter1-4]

The JupyterLab Interface: JupyterLab provides flexible building blocks for interactive, exploratory computing. While JupyterLab has many features found in traditional integrated development environments (IDEs), it remains focused on interactive, exploratory computing. The JupyterLab interface consists of a main work area containing tabs of documents and activities, a collapsible left sidebar, and a menu bar. The left sidebar contains a file browser, the list of running kernels and terminals, the command palette, the notebook cell tools inspector, and the tabs list.

More information about the JupyterLab can be found here [https://jupyterlab.readthedocs.io/en/stable/user/interface.html]




4. Create Jupyter notebook

Jupyter notebooks are documents that combine live runnable code with narrative text (Markdown), equations (LaTeX), images, interactive visualizations and other rich output. Jupyter notebooks (.ipynb files) are fully supported in JupyterLab

If you want to create a notebook, you can do so by clicking the + button in the file browser and then selecting a kernel in the new Launcher tab. Currently there are 3 different notebooks available - Python3, Julia and R. Click on Python 3 under Notebook section in the JupyterLab Interface, which will open a new Jupyter Notebook. A new file is created with a default name. Rename a file by right-clicking on its name in the file browser and selecting “Rename” from the context menu.

To know more about notebooks in JupyterLab click here [https://jupyterlab.readthedocs.io/en/stable/user/notebook.html]


Tip

To open the classic Notebook from JupyterLab, select “Launch Classic Notebook” from the JupyterLab Help menu.



[image: jupyter1-5]


Note

There are plenty other cool stuff that you can do in JupyterLab such as using consoles [https://jupyterlab.readthedocs.io/en/stable/user/code_console.html], using terminal [https://jupyterlab.readthedocs.io/en/stable/user/terminal.html] and using text editor [https://jupyterlab.readthedocs.io/en/stable/user/file_editor.html]






5. Write your code

Once you open a new notebook, you can start writing your code, put markdown text, generate plots, save plots etc.

[image: jupyter1-6]




6. Complet and Save Outputs

After finishing your analysis, you can save outputs to data store by clicking the Analysis window, then select the sshiny analysis that you are running and then selecting Complete and Save Outputs under “Analyses” button.

[image: jupyter1-7]

[image: jupyter1-8]

After you had done this, you can find the outputs that you generated (if any) in the analysis of the JupyterLab.


Warning

Currently, VICE can run for 48 hrs beyond which the apps will be terminated. So make sure you run your analysis before 48 hrs.









          

      

      

    

  

  
    
    Docker related resources
    

    

    

    

    
 
  

    
      
          
            
  
Docker related resources

Awesome Docker [https://veggiemonk.github.io/awesome-docker/]

Docker labs [https://github.com/docker/labs]

Docker Community Slack [https://community.docker.com/registrations/groups/4316]

Docker Community Forums [https://forums.docker.com/]

Docker hub [https://hub.docker.com/]

Docker documentation [http://docs.docker.com/]

Docker on StackOverflow [https://stackoverflow.com/questions/tagged/docker]

Docker on Twitter [http://twitter.com/docker]

Play With Docker Hands-On Labs [http://training.play-with-docker.com/]

Docker tips [https://blog.docker.com/2018/01/5-tips-learn-docker-2018/]

Docker cloud [https://cloud.docker.com]

Docker store [https://store.doc]

Interesting tutorials and blog posts:


	Docker Blog [http://blog.docker.com/]


	A beginner friendly intro to VMs and Docker [https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b#.3giab6wvo]


	Intro to Docker from Neurohackweek [https://neurohackweek.github.io/docker-for-scientists/]


	Understanding Images [https://code.tutsplus.com/tutorials/docker-from-the-ground-up-understanding-images--cms-28165]








          

      

      

    

  

  
    
    Singularity related resources
    

    

    

    

    
 
  

    
      
          
            
  
Singularity related resources

Singularity Homepage [https://www.sylabs.io/guides/2.6/user-guide/index.html#]

Singularity Hub [https://www.singularity-hub.org/]

University of Arizona Singularity Tutorials [https://docs.hpc.arizona.edu/display/UAHPC/Singularity+Tutorials]

NIH HPC [https://hpc.nih.gov/apps/singularity.html]

Dolmades - Windows Apps in Linux Docker-Singularity Containers [http://dolmades.org] Warning not tested


Singularity Talks

Gregory Kurtzer, creator of Singularity has provided two good talks online: Introduction to Singularity [https://wilsonweb.fnal.gov/slides/hpc-containers-singularity-introductory.pdf], and Advanced Singularity [https://www.intel.com/content/dam/www/public/us/en/documents/presentation/hpc-containers-singularity-advanced.pdf].

Vanessa Sochat, lead developer of Singularity Hub, also has given a great talk on Singularity [https://docs.google.com/presentation/d/14-iKKUpGJC_1qpVFVUyUaitc8xFSw9Rp3v_UE9IGgjM/pub?start=false&loop=false&delayms=3000&slide=id.g1c1cec989b_0_154] which you can see online.







          

      

      

    

  

  
    
    Other resources
    

    

    

    

    
 
  

    
      
          
            
  
Other resources

University of Arizona Campus Resources


	UA Campus Accessibility [http://www.arizona.edu/campus-accessibility]


	UA Campus Transportation [https://parking.arizona.edu/campus-services/cattran/]


	Family Spaces and Lactation Support [https://lifework.arizona.edu/cc/lactation_information]


	BIO5 Institute [http://www.bio5.org/]


	Transportation beyond BIO5 and UA campus [http://www.sunlinkstreetcar.com/]


	Banner UMC Cafeteria [https://www.yelp.com/biz/banner-university-medical-center-tucson-cafeteria-tucson/]








          

      

      

    

  

  
    
    For instructors!
    

    

    

    

    
 
  

    
      
          
            
  
For instructors!

Coordinating Web site work

Please create a pull request (PR) as soon as you start editing something,
rather than waiting!  That way you can tell others what you’re working on.

You could/should also mention it on Slack in the “cc-leads” channel.

Technical info re adding content to the Web site

All the Container Camp workshop tutorials are stored on GitHub [https://github.com/CyVerse-learning-materials/container_camp_workshop_2018].

We will use GitHub Flow [https://guides.github.com/introduction/flow/] for updates: from the command line,



	fork the container camp repository;


	edit, change, add, etc;


	submit a PR;


	when ready to review & merge, say ‘ready for review & merge @cc2019’.







It’s important that all updates go through code review by
someone. Anyone with push access to the repo can review and merge!

From the Web site, you should be able to edit the files and then set up a
PR directly. You can also fork the repo, perform multiple edits and submit a PR through the web interface.

Updating the “official” Web site.

The Web site [https://cyverse-container-camp-workshop-2019.readthedocs-hosted.com/], will update automatically
from GitHub.  However, it may take 5-15 minutes to do so.

Building a local copy of the Web site.

Briefly,


	clone the repo:




git clone https://github.com/CyVerse-learning-materials/container_camp_workshop_2019.git``






	set up a virtualenv with python2 or python3:




python -m virtualenv buildenv -p python3.5; . ~/buildenv/bin/activate






	install the prerequisites:




pip install -r requirements.txt






	build site:




make html






	open / click on




_build/html/index.html





Formatting, guidelines, etc.

Everything can/should be in
Restructured text [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet!]
If you’re not super familiar with Restructured text, you can use
online restructured text editor to write your tutorials.

(Note that you can go visit the github repo and it will helpfully render
.rst files for you if you click on them! They just won’t have the full
site template.)

Files and images that don’t need to be “compiled” and should just be
served up through the web site can be put in the _static
directory; their URL will then be


https://cyverse-container-camp-workshop-2019.readthedocs-hosted.com/_static/filename




Images

Image formatting in Restructured text is pretty straightforward. Here is an example

[image: static_site_docker]

The code that generates this image is this

[image: instructors_code]





          

      

      

    

  

  
    
    Problems? Bugs? Questions?
    

    

    

    

    
 
  

    
      
          
            
  
Problems? Bugs? Questions?


	If there is a bug and you can fix it: submit a PR. Make sure that I know who you are so that I can thank you.


	If there is a bug and you can’t fix it, but you can reproduce it: submit an issue explaining how to reproduce.


	If there is a bug and you can’t even reproduce it: sorry. It is probably an Heisenbug. We can’t act on it until it’s reproducible, alas.


	If you have attended this workshop and have feedback, or if you want somebody to deliver that workshop at your conference or for your company: you can contact one of us!




Fix or improve this documentation


	On Github: Repo link [https://cyverse-container-camp-workshop-2019.readthedocs-hosted.com/en/latest/]


	Send feedback: support@cyverse.org








          

      

      

    

  

  
    
    Index
    

    

    

    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  

  
    
    container_camp_workshop_2020
    

    

    

    

    
 
  

    
      
          
            
  
container_camp_workshop_2020

ReadTheDocs website for Container Camp 2020 htps://cyverse.org/cc





          

      

      

    

  

  
    
    1. Check on file versions (all files below should have a version comment in the first line of the file)
    

    

    

    

    
 
  

    
      
          
            
  

name: Triage for Release
about: Checklist for upgrading to Learning Center 2.0
title: Triage for [Project Title] Release [X.X.X]
labels: 2.0 Release
assignees: ‘’



This is a checklist issue. As we review each repo we should check the following
items.


1. Check on file versions (all files below should have a version comment in the first line of the file)


	[ ] misc/static/cyverse.css is version 2.0


	[ ] misc/static/cyverse.js is version 2.0


	[ ] misc/static/detail-expand.css is version 2.0


	[ ] misc/static/detail-expand.js is version 2.0


	[ ] misc/static/intercom-script-for-learning.js is version 2.0


	[ ] misc/static/question-answer.js is version 2.0


	[ ] misc/static/jquery.tablesorter.min.js is version 2.0


	[ ] misc/cyverse_spinx_conf.py is version 2.0


	[ ] conf.py is version 2.0 and you have updated the name of the documentation (check the project =’ line, your index.rst should have
the appropriate name)


	[ ] cyverse_rst_defined_substitutions.txt is version 2.0


	[ ] License.md is version 2.0







2. Check on the following required formatting for all pages


	[ ] All .rst pages begin with the following

.. include:: cyverse_rst_defined_substitutions.txt
.. include:: custom_urls.txt

 |CyVerse_logo|_

|Home_Icon|_
`Learning Center Home <http://learning.cyverse.org/>`_







	[ ] Documentation contains maintainer info on index.rst or the appropriate
first page. This should be placed directly before the table of contents.

Manual Maintainer(s)
------------------------

Who to contact if this manual needs fixing. You can also email
`Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

.. list-table::
    :header-rows: 1

    * - Maintainer
      - Institution
      - Contact
   * - Your Name
      - CyVerse / UA
      - Yourname@email.com







	[ ]  Documentation contains the fix/improve instructions on all .rst pages

**Fix or improve this documentation**

- Search for an answer:
   |CyVerse Learning Center|
- Ask us for help:
  click |Intercom| on the lower right-hand side of the page
- Report an issue or submit a change:
  |Github Repo Link|
- Send feedback: `Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_







	[ ] All hyperlinks in documentation are on the repo’s custom_urls.txt or cyverse_rst_defined_substitutions.txt
Note:  We want to avoid:


	Best practice is to AVOID inline hyperlinks


	Where possible links should NOT be on the .rst page but on a single
document that is included. (e.g. custom_urls.txt or cyverse_rst_defined_substitutions.txt)


	custom_urls.txt should be for URLS specific to that repo


	cyverse_rst_defined_substitutions.txt is a list of generic links to
other CyVerse and Learning Center pages


	Links should have the form below and open in a new tab:

    .. |Link Title| raw:: html

   <a href="https://LINK.URL" target="blank">Link Title</a>











	[ ] Check the |Github Repo Link| on each .rst page and ensure it links to the correct GitHub repository for this documentation.







3. Overall quality


	[ ] Maintainer is assigned and has approved the content


	[ ] Editor has checked for quality (spelling, formatting, etc.)


	[ ] Sample/test data is available with anonymous/public read access
in the appropriate directory at /iplant/home/shared/cyverse_training








          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  A collection of tools for internationalizing Python applications.



          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  UNKNOWN



          

      

      

    

  

  
    
    Jinja2
    

    

    

    

    
 
  

    
      
          
            
  
Jinja2

Jinja2 is a template engine written in pure Python.  It provides a
Django [https://www.djangoproject.com/] inspired non-XML syntax but supports inline expressions and
an optional sandboxed [https://en.wikipedia.org/wiki/Sandbox_(computer_security)] environment.


Nutshell

Here a small example of a Jinja template:

{% extends 'base.html' %}
{% block title %}Memberlist{% endblock %}
{% block content %}
  <ul>
  {% for user in users %}
    <li><a href="{{ user.url }}">{{ user.username }}</a></li>
  {% endfor %}
  </ul>
{% endblock %}








Philosophy

Application logic is for the controller but don’t try to make the life
for the template designer too hard by giving him too few functionality.

For more informations visit the new Jinja2 webpage [http://jinja.pocoo.org/] and documentation [http://jinja.pocoo.org/2/documentation/].







          

      

      

    

  

  
    
    MarkupSafe
    

    

    

    

    
 
  

    
      
          
            
  
MarkupSafe

Implements a unicode subclass that supports HTML strings:

>>> from markupsafe import Markup, escape
>>> escape("<script>alert(document.cookie);</script>")
Markup(u'&lt;script&gt;alert(document.cookie);&lt;/script&gt;')
>>> tmpl = Markup("<em>%s</em>")
>>> tmpl % "Peter > Lustig"
Markup(u'<em>Peter &gt; Lustig</em>')





If you want to make an object unicode that is not yet unicode
but don’t want to lose the taint information, you can use the
soft_unicode function.  (On Python 3 you can also use soft_str which
is a different name for the same function).

>>> from markupsafe import soft_unicode
>>> soft_unicode(42)
u'42'
>>> soft_unicode(Markup('foo'))
Markup(u'foo')






HTML Representations

Objects can customize their HTML markup equivalent by overriding
the __html__ function:

>>> class Foo(object):
...  def __html__(self):
...   return '<strong>Nice</strong>'
...
>>> escape(Foo())
Markup(u'<strong>Nice</strong>')
>>> Markup(Foo())
Markup(u'<strong>Nice</strong>')








Silent Escapes

Since MarkupSafe 0.10 there is now also a separate escape function
called escape_silent that returns an empty string for None for
consistency with other systems that return empty strings for None
when escaping (for instance Pylons’ webhelpers).

If you also want to use this for the escape method of the Markup
object, you can create your own subclass that does that:

from markupsafe import Markup, escape_silent as escape

class SilentMarkup(Markup):
    __slots__ = ()

    @classmethod
    def escape(cls, s):
        return cls(escape(s))








New-Style String Formatting

Starting with MarkupSafe 0.21 new style string formats from Python 2.6 and
3.x are now fully supported.  Previously the escape behavior of those
functions was spotty at best.  The new implementations operates under the
following algorithm:


	if an object has an __html_format__ method it is called as
replacement for __format__ with the format specifier.  It either
has to return a string or markup object.


	if an object has an __html__ method it is called.


	otherwise the default format system of Python kicks in and the result
is HTML escaped.




Here is how you can implement your own formatting:

class User(object):

    def __init__(self, id, username):
        self.id = id
        self.username = username

    def __html_format__(self, format_spec):
        if format_spec == 'link':
            return Markup('<a href="/user/{0}">{1}</a>').format(
                self.id,
                self.__html__(),
            )
        elif format_spec:
            raise ValueError('Invalid format spec')
        return self.__html__()

    def __html__(self):
        return Markup('<span class=user>{0}</span>').format(self.username)





And to format that user:

>>> user = User(1, 'foo')
>>> Markup('<p>User: {0:link}').format(user)
Markup(u'<p>User: <a href="/user/1"><span class=user>foo</span></a>')





Markupsafe supports Python 2.6, 2.7 and Python 3.3 and higher.







          

      

      

    

  

  
    
    Pygments
    

    

    

    

    
 
  

    
      
          
            
  
Pygments

Pygments is a syntax highlighting package written in Python.

It is a generic syntax highlighter suitable for use in code hosting, forums,
wikis or other applications that need to prettify source code.  Highlights
are:


	a wide range of over 300 languages and other text formats is supported


	special attention is paid to details, increasing quality by a fair amount


	support for new languages and formats are added easily


	a number of output formats, presently HTML, LaTeX, RTF, SVG, all image       formats that PIL supports and ANSI sequences


	it is usable as a command-line tool and as a library





	copyright

	Copyright 2006-2017 by the Pygments team, see AUTHORS.



	license

	BSD, see LICENSE for details.









          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  Sphinx is a tool that makes it easy to create intelligent and beautiful
documentation for Python projects (or other documents consisting of multiple
reStructuredText sources), written by Georg Brandl.  It was originally created
for the new Python documentation, and has excellent facilities for Python
project documentation, but C/C++ is supported as well, and more languages are
planned.

Sphinx uses reStructuredText as its markup language, and many of its strengths
come from the power and straightforwardness of reStructuredText and its parsing
and translating suite, the Docutils.

Among its features are the following:


	Output formats: HTML (including derivative formats such as HTML Help, Epub
and Qt Help), plain text, manual pages and LaTeX or direct PDF output
using rst2pdf


	Extensive cross-references: semantic markup and automatic links
for functions, classes, glossary terms and similar pieces of information


	Hierarchical structure: easy definition of a document tree, with automatic
links to siblings, parents and children


	Automatic indices: general index as well as a module index


	Code handling: automatic highlighting using the Pygments highlighter


	Flexible HTML output using the Jinja 2 templating engine


	Various extensions are available, e.g. for automatic testing of snippets
and inclusion of appropriately formatted docstrings


	Setuptools integration






          

      

      

    

  

  
    
    What is Alabaster?
    

    

    

    

    
 
  

    
      
          
            
  
What is Alabaster?

Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx [http://sphinx-doc.org] documentation system. It is Python 2+3 compatible.

It began as a third-party theme, and is still maintained separately, but as of
Sphinx 1.3, Alabaster is an install-time dependency of Sphinx and is selected
as the default theme.

Live examples of this theme can be seen on this project’s own website [http://alabaster.readthedocs.io], paramiko.org [http://paramiko.org],
fabfile.org [http://fabfile.org] and pyinvoke.org [http://pyinvoke.org].

For more documentation, please see http://alabaster.readthedocs.io.


Note

You can install the development version via pip install -e
git+https://github.com/bitprophet/alabaster/#egg=alabaster.







          

      

      

    

  

  
    
    Certifi: Python SSL Certificates
    

    

    

    

    
 
  

    
      
          
            
  
Certifi: Python SSL Certificates

Certifi [http://certifi.io/en/latest/] is a carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the identity
of TLS hosts. It has been extracted from the Requests [http://docs.python-requests.org/en/latest/] project.


Installation

certifi is available on PyPI. Simply install it with pip:

$ pip install certifi








Usage

To reference the installed certificate authority (CA) bundle, you can use the
built-in function:

>>> import certifi

>>> certifi.where()
'/usr/local/lib/python2.7/site-packages/certifi/cacert.pem'





Enjoy!


1024-bit Root Certificates

Browsers and certificate authorities have concluded that 1024-bit keys are
unacceptably weak for certificates, particularly root certificates. For this
reason, Mozilla has removed any weak (i.e. 1024-bit key) certificate from its
bundle, replacing it with an equivalent strong (i.e. 2048-bit or greater key)
certificate from the same CA. Because Mozilla removed these certificates from
its bundle, certifi removed them as well.

In previous versions, certifi provided the certifi.old_where() function
to intentionally re-add the 1024-bit roots back into your bundle. This was not
recommended in production and therefore was removed. To assist in migrating old
code, the function certifi.old_where() continues to exist as an alias of
certifi.where(). Please update your code to use certifi.where()
instead. certifi.old_where() will be removed in 2018.









          

      

      

    

  

  
    
    Chardet: The Universal Character Encoding Detector
    

    

    

    

    
 
  

    
      
          
            
  
Chardet: The Universal Character Encoding Detector

[image: Build status]
 [https://travis-ci.org/chardet/chardet][image: ../../../../../_images/stable1.svg]
 [https://coveralls.io/r/chardet/chardet][image: Latest version on PyPI]
 [https://warehouse.python.org/project/chardet/][image: License]
	Detects

	
	ASCII, UTF-8, UTF-16 (2 variants), UTF-32 (4 variants)


	Big5, GB2312, EUC-TW, HZ-GB-2312, ISO-2022-CN (Traditional and Simplified Chinese)


	EUC-JP, SHIFT_JIS, CP932, ISO-2022-JP (Japanese)


	EUC-KR, ISO-2022-KR (Korean)


	KOI8-R, MacCyrillic, IBM855, IBM866, ISO-8859-5, windows-1251 (Cyrillic)


	ISO-8859-5, windows-1251 (Bulgarian)


	ISO-8859-1, windows-1252 (Western European languages)


	ISO-8859-7, windows-1253 (Greek)


	ISO-8859-8, windows-1255 (Visual and Logical Hebrew)


	TIS-620 (Thai)









Note

Our ISO-8859-2 and windows-1250 (Hungarian) probers have been temporarily
disabled until we can retrain the models.



Requires Python 2.6, 2.7, or 3.3+.




Installation

Install from PyPI [https://pypi.python.org/pypi/chardet]:

pip install chardet








Documentation

For users, docs are now available at https://chardet.readthedocs.io/.




Command-line Tool

chardet comes with a command-line script which reports on the encodings of one
or more files:

% chardetect somefile someotherfile
somefile: windows-1252 with confidence 0.5
someotherfile: ascii with confidence 1.0








About

This is a continuation of Mark Pilgrim’s excellent chardet. Previously, two
versions needed to be maintained: one that supported python 2.x and one that
supported python 3.x.  We’ve recently merged with Ian Cordasco [https://github.com/sigmavirus24]’s
charade [https://github.com/sigmavirus24/charade] fork, so now we have one
coherent version that works for Python 2.6+.


	maintainer

	Dan Blanchard









          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  Docutils is a modular system for processing documentation
into useful formats, such as HTML, XML, and LaTeX.  For
input Docutils supports reStructuredText, an easy-to-read,
what-you-see-is-what-you-get plaintext markup syntax.



          

      

      

    

  

  
    
    Source Serif Pro
    

    

    

    

    
 
  

    
      
          
            
  
Source Serif Pro

Source Serif Pro is a set of OpenType fonts to complement the Source Sans Pro [https://github.com/adobe-fonts/source-sans-pro] family.
In addition to a functional OpenType font, this open source project provides all of the source files that were used to build this OpenType font by using the AFDKO makeotf tool.


Installation instructions


	Mac OS X [http://support.apple.com/kb/HT2509]


	Windows [http://windows.microsoft.com/en-us/windows-vista/install-or-uninstall-fonts]


	Linux/Unix-based systems [https://github.com/adobe-fonts/source-code-pro/issues/17#issuecomment-8967116]







Getting Involved

Send suggestions for changes to the Source Serif OpenType font project maintainer, [Frank Grießhammer](mailto:opensourcefonts@adobe.com?subject=[GitHub] Source Serif Pro), for consideration.




Further information

For information about the design and background of Source Serif, please refer to the official font readme file [http://htmlpreview.github.io/?https://github.com/adobe-fonts/source-serif-pro/blob/master/SourceSerifProReadMe.html].







          

      

      

    

  

  
    
    Guzzle Sphinx Theme
    

    

    

    

    
 
  

    
      
          
            
  
Guzzle Sphinx Theme

Sphinx theme used by Guzzle: http://guzzlephp.org


Installation

Install via pip:

$ pip install guzzle_sphinx_theme





or if you have the code checked out locally:

$ python setup.py install








Configuration

Add the following to your conf.py:

import guzzle_sphinx_theme

# Adds an HTML table visitor to apply Bootstrap table classes
html_translator_class = 'guzzle_sphinx_theme.HTMLTranslator'
html_theme_path = guzzle_sphinx_theme.html_theme_path()
html_theme = 'guzzle_sphinx_theme'

# Register the theme as an extension to generate a sitemap.xml
extensions.append("guzzle_sphinx_theme")

# Guzzle theme options (see theme.conf for more information)
html_theme_options = {
    # Set the name of the project to appear in the sidebar
    "project_nav_name": "Project Name",
}





There are a lot more ways to customize this theme, as this more comprehensive
example shows:

import guzzle_sphinx_theme

# Adds an HTML table visitor to apply Bootstrap table classes
html_translator_class = 'guzzle_sphinx_theme.HTMLTranslator'
html_theme_path = guzzle_sphinx_theme.html_theme_path()
html_theme = 'guzzle_sphinx_theme'

# Register the theme as an extension to generate a sitemap.xml
extensions.append("guzzle_sphinx_theme")

# Guzzle theme options (see theme.conf for more information)
html_theme_options = {

    # Set the path to a special layout to include for the homepage
    "index_template": "special_index.html",

    # Set the name of the project to appear in the left sidebar.
    "project_nav_name": "Project Name",

    # Set your Disqus short name to enable comments
    "disqus_comments_shortname": "my_disqus_comments_short_name",

    # Set you GA account ID to enable tracking
    "google_analytics_account": "my_ga_account",

    # Path to a touch icon
    "touch_icon": "",

    # Specify a base_url used to generate sitemap.xml links. If not
    # specified, then no sitemap will be built.
    "base_url": ""

    # Allow a separate homepage from the master_doc
    "homepage": "index",

    # Allow the project link to be overriden to a custom URL.
    "projectlink": "http://myproject.url",
}








Customizing the layout

You can customize the theme by overriding Jinja template blocks. For example,
“layout.html” contains several blocks that can be overridden or extended.

Place a “layout.html” file in your project’s “/_templates” directory.

mkdir source/_templates
touch source/_templates/layout.html





Then, configure your “conf.py”:

templates_path = ['_templates']





Finally, edit your override file “source/_templates/layout.html”:

{# Import the theme's layout. #}
{% extends "!layout.html" %}

{%- block extra_head %}
{# Add custom things to the head HTML tag #}
{# Call the parent block #}
{{ super() }}
{%- endblock %}






Note

If you are using Readthedocs, then you might run into an issue where they
don’t currently allow you to extend layout.html.









          

      

      

    

  

  
    
    Internationalized Domain Names in Applications (IDNA)
    

    

    

    

    
 
  

    
      
          
            
  
Internationalized Domain Names in Applications (IDNA)

Support for the Internationalised Domain Names in Applications
(IDNA) protocol as specified in RFC 5891 [http://tools.ietf.org/html/rfc5891].
This is the latest version of the protocol and is sometimes referred to as
“IDNA 2008”.

This library also provides support for Unicode Technical Standard 46,
Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/].

This acts as a suitable replacement for the “encodings.idna” module that
comes with the Python standard library, but only supports the
old, deprecated IDNA specification (RFC 3490 [http://tools.ietf.org/html/rfc3490]).

Basic functions are simply executed:

# Python 3
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト

# Python 2
>>> import idna
>>> idna.encode(u'ドメイン.テスト')
'xn--eckwd4c7c.xn--zckzah'
>>> print idna.decode('xn--eckwd4c7c.xn--zckzah')
ドメイン.テスト






Packages

The latest tagged release version is published in the PyPI repository:

[image: ../../../../../_images/idna.svg]
 [http://badge.fury.io/py/idna]


Installation

To install this library, you can use pip:

$ pip install idna





Alternatively, you can install the package using the bundled setup script:

$ python setup.py install





This library works with Python 2.6 or later, and Python 3.3 or later.




Usage

For typical usage, the encode and decode functions will take a domain
name argument and perform a conversion to A-labels or U-labels respectively.

# Python 3
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト





You may use the codec encoding and decoding methods using the
idna.codec module:

# Python 2
>>> import idna.codec
>>> print u'домена.испытание'.encode('idna')
xn--80ahd1agd.xn--80akhbyknj4f
>>> print 'xn--80ahd1agd.xn--80akhbyknj4f'.decode('idna')
домена.испытание





Conversions can be applied at a per-label basis using the ulabel or alabel
functions if necessary:

# Python 2
>>> idna.alabel(u'测试')
'xn--0zwm56d'






Compatibility Mapping (UTS #46)

As described in RFC 5895 [http://tools.ietf.org/html/rfc5895], the IDNA
specification no longer normalizes input from different potential ways a user
may input a domain name. This functionality, known as a “mapping”, is now
considered by the specification to be a local user-interface issue distinct
from IDNA conversion functionality.

This library provides one such mapping, that was developed by the Unicode
Consortium. Known as Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/],
it provides for both a regular mapping for typical applications, as well as
a transitional mapping to help migrate from older IDNA 2003 applications.

For example, “Königsgäßchen” is not a permissible label as LATIN CAPITAL
LETTER K is not allowed (nor are capital letters in general). UTS 46 will
convert this into lower case prior to applying the IDNA conversion.

# Python 3
>>> import idna
>>> idna.encode(u'Königsgäßchen')
...
idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of 'Königsgäßchen' not allowed
>>> idna.encode('Königsgäßchen', uts46=True)
b'xn--knigsgchen-b4a3dun'
>>> print(idna.decode('xn--knigsgchen-b4a3dun'))
königsgäßchen





Transitional processing provides conversions to help transition from the older
2003 standard to the current standard. For example, in the original IDNA
specification, the LATIN SMALL LETTER SHARP S (ß) was converted into two
LATIN SMALL LETTER S (ss), whereas in the current IDNA specification this
conversion is not performed.

# Python 2
>>> idna.encode(u'Königsgäßchen', uts46=True, transitional=True)
'xn--knigsgsschen-lcb0w'





Implementors should use transitional processing with caution, only in rare
cases where conversion from legacy labels to current labels must be performed
(i.e. IDNA implementations that pre-date 2008). For typical applications
that just need to convert labels, transitional processing is unlikely to be
beneficial and could produce unexpected incompatible results.




encodings.idna Compatibility

Function calls from the Python built-in encodings.idna module are
mapped to their IDNA 2008 equivalents using the idna.compat module.
Simply substitute the import clause in your code to refer to the
new module name.






Exceptions

All errors raised during the conversion following the specification should
raise an exception derived from the idna.IDNAError base class.

More specific exceptions that may be generated as idna.IDNABidiError
when the error reflects an illegal combination of left-to-right and right-to-left
characters in a label; idna.InvalidCodepoint when a specific codepoint is
an illegal character in an IDN label (i.e. INVALID); and idna.InvalidCodepointContext
when the codepoint is illegal based on its positional context (i.e. it is CONTEXTO
or CONTEXTJ but the contextual requirements are not satisfied.)




Building and Diagnostics

The IDNA and UTS 46 functionality relies upon pre-calculated lookup tables for
performance. These tables are derived from computing against eligibility criteria
in the respective standards. These tables are computed using the command-line
script tools/idna-data.

This tool will fetch relevant tables from the Unicode Consortium and perform the
required calculations to identify eligibility. It has three main modes:


	idna-data make-libdata. Generates idnadata.py and uts46data.py,
the pre-calculated lookup tables using for IDNA and UTS 46 conversions. Implementors
who wish to track this library against a different Unicode version may use this tool
to manually generate a different version of the idnadata.py and uts46data.py
files.


	idna-data make-table. Generate a table of the IDNA disposition
(e.g. PVALID, CONTEXTJ, CONTEXTO) in the format found in Appendix B.1 of RFC
5892 and the pre-computed tables published by IANA [http://iana.org/].


	idna-data U+0061. Prints debugging output on the various properties
associated with an individual Unicode codepoint (in this case, U+0061), that are
used to assess the IDNA and UTS 46 status of a codepoint. This is helpful in debugging
or analysis.




The tool accepts a number of arguments, described using idna-data -h. Most notably,
the --version argument allows the specification of the version of Unicode to use
in computing the table data. For example, idna-data --version 9.0.0 make-libdata
will generate library data against Unicode 9.0.0.

Note that this script requires Python 3, but all generated library data will work
in Python 2.6+.




Testing

The library has a test suite based on each rule of the IDNA specification, as
well as tests that are provided as part of the Unicode Technical Standard 46,
Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/].

The tests are run automatically on each commit at Travis CI:

[image: ../../../../../_images/idna1.svg]
 [https://travis-ci.org/kjd/idna]





          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  It parses image files’ header and return image size.


	PNG


	JPEG


	JPEG2000


	GIF




This is a pure Python library.



          

      

      

    

  

  
    
    pip
    

    

    

    

    
 
  

    
      
          
            
  
pip

The PyPA recommended [https://packaging.python.org/en/latest/current/]
tool for installing Python packages.


	Installation [https://pip.pypa.io/en/stable/installing.html]


	Documentation [https://pip.pypa.io/]


	Changelog [https://pip.pypa.io/en/stable/news.html]


	Github Page [https://github.com/pypa/pip]


	Issue Tracking [https://github.com/pypa/pip/issues]


	User mailing list [http://groups.google.com/group/python-virtualenv]


	Dev mailing list [http://groups.google.com/group/pypa-dev]


	User IRC: #pypa on Freenode.


	Dev IRC: #pypa-dev on Freenode.




[image: ../../../../../_images/pip.svg]
 [https://pypi.python.org/pypi/pip][image: ../../../../../_images/master.svg]
 [http://travis-ci.org/pypa/pip][image: ../../../../../_images/pip1.svg]
 [https://ci.appveyor.com/project/pypa/pip/history][image: ../../../../../_images/98a9f7486223ce3cfe5c4cd02f88d0b354d2cf61.svg]
 [https://pip.pypa.io/en/stable]
Code of Conduct

Everyone interacting in the pip project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].







          

      

      

    

  

  
    
    pytz - World Timezone Definitions for Python
    

    

    

    

    
 
  

    
      
          
            
  
pytz - World Timezone Definitions for Python


	Author

	Stuart Bishop <stuart@stuartbishop.net>






Introduction

pytz brings the Olson tz database into Python. This library allows
accurate and cross platform timezone calculations using Python 2.4
or higher. It also solves the issue of ambiguous times at the end
of daylight saving time, which you can read more about in the Python
Library Reference (datetime.tzinfo).

Almost all of the Olson timezones are supported.


Note

This library differs from the documented Python API for
tzinfo implementations; if you want to create local wallclock
times you need to use the localize() method documented in this
document. In addition, if you perform date arithmetic on local
times that cross DST boundaries, the result may be in an incorrect
timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get
2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A
normalize() method is provided to correct this. Unfortunately these
issues cannot be resolved without modifying the Python datetime
implementation (see PEP-431).






Installation

This package can either be installed from a .egg file using setuptools,
or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an
administrative user:

python setup.py install





If you are installing using setuptools, you don’t even need to download
anything as the latest version will be downloaded for you
from the Python package index:

easy_install --upgrade pytz





If you already have the .egg file, you can use that too:

easy_install pytz-2008g-py2.6.egg








Example & Usage


Localized times and date arithmetic

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'





This library only supports two ways of building a localized time. The
first is to use the localize() method provided by the pytz library.
This is used to localize a naive datetime (datetime with no timezone
information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500





The second way of building a localized time is by converting an existing
localized time using the standard astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'





Unfortunately using the tzinfo argument of the standard datetime
constructors ‘’does not work’’ with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 LMT+0020'





It is safe for timezones without daylight saving transitions though, such
as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'





The preferred way of dealing with times is to always work in UTC,
converting to localtime only when generating output to be read
by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'





This library also allows you to do date arithmetic using local
times, although it is more complicated than working in UTC as you
need to use the normalize() method to handle daylight saving time
and other timezone transitions. In this example, loc_dt is set
to the instant when daylight saving time ends in the US/Eastern
timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'





Creating local times is also tricky, and the reason why working with
local times is not recommended. Unfortunately, you cannot just pass
a tzinfo argument when constructing a datetime (see the next
section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'





Converting between timezones is more easily done, using the
standard astimezone method.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = utc_dt.astimezone(au_tz)
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> utc_dt == utc_dt2
True





You can take shortcuts when dealing with the UTC side of timezone
conversions. normalize() and localize() are not really
necessary when there are no daylight saving time transitions to
deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'








tzinfo API

The tzinfo instances returned by the timezone() function have
been extended to cope with ambiguous times by adding an is_dst
parameter to the utcoffset(), dst() && tzname() methods.

>>> tz = timezone('America/St_Johns')





>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)





The is_dst parameter is ignored for most timestamps. It is only used
during DST transition ambiguous periods to resolve that ambiguity.

>>> tz.utcoffset(normal, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=True)
'NDT'





>>> tz.utcoffset(ambiguous, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(ambiguous, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'





>>> tz.utcoffset(normal, is_dst=False)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'





>>> tz.utcoffset(ambiguous, is_dst=False)
datetime.timedelta(-1, 73800)
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'





If is_dst is not specified, ambiguous timestamps will raise
an pytz.exceptions.AmbiguousTimeError exception.

>>> tz.utcoffset(normal)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal)
'NDT'





>>> import pytz.exceptions
>>> try:
...     tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
...     tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
...     tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00










Problems with Localtime

The major problem we have to deal with is that certain datetimes
may occur twice in a year. For example, in the US/Eastern timezone
on the last Sunday morning in October, the following sequence
happens:



	01:00 EDT occurs


	1 hour later, instead of 2:00am the clock is turned back 1 hour
and 01:00 happens again (this time 01:00 EST)







In fact, every instant between 01:00 and 02:00 occurs twice. This means
that if you try and create a time in the ‘US/Eastern’ timezone
the standard datetime syntax, there is no way to specify if you meant
before of after the end-of-daylight-saving-time transition. Using the
pytz custom syntax, the best you can do is make an educated guess:

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 1, 30, 00))
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'





As you can see, the system has chosen one for you and there is a 50%
chance of it being out by one hour. For some applications, this does
not matter. However, if you are trying to schedule meetings with people
in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC.  The pytz
package encourages using UTC for internal timezone representation by
including a special UTC implementation based on the standard Python
reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a
smaller size than other pytz tzinfo instances.  The UTC implementation
can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(‘UTC’).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True





Note that some other timezones are commonly thought of as the same (GMT,
Greenwich, Universal, etc.). The definition of UTC is distinct from these
other timezones, and they are not equivalent. For this reason, they will
not compare the same in Python.

>>> utc == pytz.timezone('GMT')
False





See the section What is UTC, below.

If you insist on working with local times, this library provides a
facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500





If you pass None as the is_dst flag to localize(), pytz will refuse to
guess and raise exceptions if you try to build ambiguous or non-existent
times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern
timezone when the clocks where put back at the end of Daylight Saving
Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
...     eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
...     print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00





Similarly, 2:30am on 7th April 2002 never happened at all in the
US/Eastern timezone, as the clocks where put forward at 2:00am skipping
the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
...     eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
...     print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00





Both of these exceptions share a common base class to make error handling
easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True





A special case is where countries change their timezone definitions
with no daylight savings time switch. For example, in 1915 Warsaw
switched from Warsaw time to Central European time with no daylight savings
transition. So at the stroke of midnight on August 5th 1915 the clocks
were wound back 24 minutes creating an ambiguous time period that cannot
be specified without referring to the timezone abbreviation or the
actual UTC offset. In this case midnight happened twice, neither time
during a daylight saving time period. pytz handles this transition by
treating the ambiguous period before the switch as daylight savings
time, and the ambiguous period after as standard time.

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> amb_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=True)
>>> amb_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> amb_dt2 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> amb_dt2.strftime(fmt)
'1915-08-04 23:59:59 CET+0100'
>>> switch_dt = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> switch_dt.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(switch_dt - amb_dt1)
'0:24:01'
>>> str(switch_dt - amb_dt2)
'0:00:01'





The best way of creating a time during an ambiguous time period is
by converting from another timezone such as UTC:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'





The standard Python way of handling all these ambiguities is not to
handle them, such as demonstrated in this example using the US/Eastern
timezone definition from the Python documentation (Note that this
implementation only works for dates between 1987 and 2006 - it is
included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'





Notice the first two results? At first glance you might think they are
correct, but taking the UTC offset into account you find that they are
actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'








Country Information

A mechanism is provided to access the timezones commonly in use
for a particular country, looked up using the ISO 3166 country code.
It returns a list of strings that can be used to retrieve the relevant
tzinfo instance using pytz.timezone():

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham





The Olson database comes with a ISO 3166 country code to English country
name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand








What is UTC

‘UTC’ is Coordinated Universal Time [https://en.wikipedia.org/wiki/Coordinated_Universal_Time]. It is a successor to, but distinct
from, Greenwich Mean Time (GMT) and the various definitions of Universal
Time. UTC is now the worldwide standard for regulating clocks and time
measurement.

All other timezones are defined relative to UTC, and include offsets like
UTC+0800 - hours to add or subtract from UTC to derive the local time. No
daylight saving time occurs in UTC, making it a useful timezone to perform
date arithmetic without worrying about the confusion and ambiguities caused
by daylight saving time transitions, your country changing its timezone, or
mobile computers that roam through multiple timezones.




Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can
be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True





common_timezones is a list of useful, current timezones. It doesn’t
contain deprecated zones or historical zones, except for a few I’ve
deemed in common usage, such as US/Eastern (open a bug report if you
think other timezones are deserving of being included here). It is also
a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'US/Pacific-New' in all_timezones
True
>>> 'US/Pacific-New' in common_timezones
False





Both common_timezones and all_timezones are alphabetically
sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True





all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False





You can also retrieve lists of timezones used by particular countries
using the country_timezones() function. It requires an ISO-3166
two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich








Internationalization - i18n/l10n

Pytz is an interface to the IANA database, which uses ASCII names. The Unicode  Consortium’s Unicode Locales (CLDR) [http://cldr.unicode.org]
project provides translations. Thomas Khyn’s
l18n [https://pypi.python.org/pypi/l18n] package can be used to access
these translations from Python.




License

MIT license.

This code is also available as part of Zope 3 under the Zope Public
License,  Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other
open source projects.




Latest Versions

This package will be updated after releases of the Olson timezone
database.  The latest version can be downloaded from the Python Package
Index [http://pypi.python.org/pypi/pytz/].  The code that is used
to generate this distribution is hosted on launchpad.net and available
using git:

git clone https://git.launchpad.net/pytz





A mirror on github is also available at https://github.com/stub42/pytz

Announcements of new releases are made on
Launchpad [https://launchpad.net/pytz], and the
Atom feed [http://feeds.launchpad.net/pytz/announcements.atom]
hosted there.




Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad [https://bugs.launchpad.net/pytz].




Issues & Limitations


	Offsets from UTC are rounded to the nearest whole minute, so timezones
such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This
is a limitation of the Python datetime library.


	If you think a timezone definition is incorrect, I probably can’t fix
it. pytz is a direct translation of the Olson timezone database, and
changes to the timezone definitions need to be made to this source.
If you find errors they should be reported to the time zone mailing
list, linked from http://www.iana.org/time-zones.







Further Reading

More info than you want to know about timezones:
http://www.twinsun.com/tz/tz-link.htm




Contact

Stuart Bishop <stuart@stuartbishop.net>







          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  UNKNOWN



          

      

      

    

  

  
    
    Requests: HTTP for Humans
    

    

    

    

    
 
  

    
      
          
            
  
Requests: HTTP for Humans

[image: ../../../../../_images/requests.svg]
 [https://pypi.python.org/pypi/requests][image: ../../../../../_images/requests1.svg]
 [https://pypi.python.org/pypi/requests][image: ../../../../../_images/requests2.svg]
 [https://pypi.python.org/pypi/requests][image: codecov.io]
 [https://codecov.io/github/requests/requests][image: ../../../../../_images/requests3.svg]
 [https://github.com/requests/requests/graphs/contributors][image: ../../../../../_images/Say%20Thanks-!-1EAEDB.svg]
 [https://saythanks.io/to/kennethreitz]Requests is the only Non-GMO HTTP library for Python, safe for human
consumption.

Warning: Recreational use of the Python standard library for HTTP may result in dangerous side-effects,
including: security vulnerabilities, verbose code, reinventing the wheel,
constantly reading documentation, depression, headaches, or even death.

Behold, the power of Requests:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'disk_usage': 368627, u'private_gists': 484, ...}





See the similar code, sans Requests [https://gist.github.com/973705].

[image: https://raw.githubusercontent.com/requests/requests/master/docs/_static/requests-logo-small.png]
 [http://docs.python-requests.org/]Requests allows you to send organic, grass-fed HTTP/1.1 requests, without the
need for manual labor. There’s no need to manually add query strings to your
URLs, or to form-encode your POST data. Keep-alive and HTTP connection pooling
are 100% automatic, thanks to urllib3 [https://github.com/shazow/urllib3].

Besides, all the cool kids are doing it. Requests is one of the most
downloaded Python packages of all time, pulling in over 11,000,000 downloads
every month. You don’t want to be left out!


Feature Support

Requests is ready for today’s web.


	International Domains and URLs


	Keep-Alive & Connection Pooling


	Sessions with Cookie Persistence


	Browser-style SSL Verification


	Basic/Digest Authentication


	Elegant Key/Value Cookies


	Automatic Decompression


	Automatic Content Decoding


	Unicode Response Bodies


	Multipart File Uploads


	HTTP(S) Proxy Support


	Connection Timeouts


	Streaming Downloads


	.netrc Support


	Chunked Requests




Requests officially supports Python 2.6–2.7 & 3.3–3.7, and runs great on PyPy.




Installation

To install Requests, simply:

$ pip install requests
✨🍰✨





Satisfaction guaranteed.




Documentation

Fantastic documentation is available at http://docs.python-requests.org/, for a limited time only.




How to Contribute


	Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug. There is a Contributor Friendly [https://github.com/requests/requests/issues?direction=desc&labels=Contributor+Friendly&page=1&sort=updated&state=open] tag for issues that should be ideal for people who are not very familiar with the codebase yet.


	Fork the repository [http://github.com/requests/requests] on GitHub to start making your changes to the master branch (or branch off of it).


	Write a test which shows that the bug was fixed or that the feature works as expected.


	Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to AUTHORS [https://github.com/requests/requests/blob/master/AUTHORS.rst].







Release History


2.18.4 (2017-08-15)

Improvements


	Error messages for invalid headers now include the header name for easier debugging




Dependencies


	We now support idna v2.6.







2.18.3 (2017-08-02)

Improvements


	Running $ python -m requests.help now includes the installed version of idna.




Bugfixes


	Fixed issue where Requests would raise ConnectionError instead of
SSLError when encountering SSL problems when using urllib3 v1.22.







2.18.2 (2017-07-25)

Bugfixes


	requests.help no longer fails on Python 2.6 due to the absence of
ssl.OPENSSL_VERSION_NUMBER.




Dependencies


	We now support urllib3 v1.22.







2.18.1 (2017-06-14)

Bugfixes


	Fix an error in the packaging whereby the *.whl contained incorrect data that
regressed the fix in v2.17.3.







2.18.0 (2017-06-14)

Improvements


	Response is now a context manager, so can be used directly in a with statement
without first having to be wrapped by contextlib.closing().




Bugfixes


	Resolve installation failure if multiprocessing is not available


	Resolve tests crash if multiprocessing is not able to determine the number of CPU cores


	Resolve error swallowing in utils set_environ generator







2.17.3 (2017-05-29)

Improvements


	Improved packages namespace identity support, for monkeypatching libraries.







2.17.2 (2017-05-29)

Improvements


	Improved packages namespace identity support, for monkeypatching libraries.







2.17.1 (2017-05-29)

Improvements


	Improved packages namespace identity support, for monkeypatching libraries.







2.17.0 (2017-05-29)

Improvements


	Removal of the 301 redirect cache. This improves thread-safety.







2.16.5 (2017-05-28)


	Improvements to $ python -m requests.help.







2.16.4 (2017-05-27)


	Introduction of the $ python -m requests.help command, for debugging with maintainers!







2.16.3 (2017-05-27)


	Further restored the requests.packages namespace for compatibility reasons.







2.16.2 (2017-05-27)


	Further restored the requests.packages namespace for compatibility reasons.




No code modification (noted below) should be neccessary any longer.




2.16.1 (2017-05-27)


	Restored the requests.packages namespace for compatibility reasons.


	Bugfix for urllib3 version parsing.




Note: code that was written to import against the requests.packages
namespace previously will have to import code that rests at this module-level
now.

For example:

from requests.packages.urllib3.poolmanager import PoolManager





Will need to be re-written to be:

from requests.packages import urllib3
urllib3.poolmanager.PoolManager





Or, even better:

from urllib3.poolmanager import PoolManager








2.16.0 (2017-05-26)


	Unvendor ALL the things!







2.15.1 (2017-05-26)


	Everyone makes mistakes.







2.15.0 (2017-05-26)

Improvements


	Introduction of the Response.next property, for getting the next
PreparedResponse from a redirect chain (when allow_redirects=False).


	Internal refactoring of __version__ module.




Bugfixes


	Restored once-optional parameter for requests.utils.get_environ_proxies().







2.14.2 (2017-05-10)

Bugfixes


	Changed a less-than to an equal-to and an or in the dependency markers to
widen compatibility with older setuptools releases.







2.14.1 (2017-05-09)

Bugfixes


	Changed the dependency markers to widen compatibility with older pip
releases.







2.14.0 (2017-05-09)

Improvements


	It is now possible to pass no_proxy as a key to the proxies
dictionary to provide handling similar to the NO_PROXY environment
variable.


	When users provide invalid paths to certificate bundle files or directories
Requests now raises IOError, rather than failing at the time of the HTTPS
request with a fairly inscrutable certificate validation error.


	The behavior of SessionRedirectMixin was slightly altered.
resolve_redirects will now detect a redirect by calling
get_redirect_target(response) instead of directly
querying Response.is_redirect and Response.headers['location'].
Advanced users will be able to process malformed redirects more easily.


	Changed the internal calculation of elapsed request time to have higher
resolution on Windows.


	Added win_inet_pton as conditional dependency for the [socks] extra
on Windows with Python 2.7.


	Changed the proxy bypass implementation on Windows: the proxy bypass
check doesn’t use forward and reverse DNS requests anymore


	URLs with schemes that begin with http but are not http or https
no longer have their host parts forced to lowercase.




Bugfixes


	Much improved handling of non-ASCII Location header values in redirects.
Fewer UnicodeDecodeErrors are encountered on Python 2, and Python 3 now
correctly understands that Latin-1 is unlikely to be the correct encoding.


	If an attempt to seek file to find out its length fails, we now
appropriately handle that by aborting our content-length calculations.


	Restricted HTTPDigestAuth to only respond to auth challenges made on 4XX
responses, rather than to all auth challenges.


	Fixed some code that was firing DeprecationWarning on Python 3.6.


	The dismayed person emoticon (/o\\) no longer has a big head. I’m sure
this is what you were all worrying about most.




Miscellaneous


	Updated bundled urllib3 to v1.21.1.


	Updated bundled chardet to v3.0.2.


	Updated bundled idna to v2.5.


	Updated bundled certifi to 2017.4.17.







2.13.0 (2017-01-24)

Features


	Only load the idna library when we’ve determined we need it. This will
save some memory for users.




Miscellaneous


	Updated bundled urllib3 to 1.20.


	Updated bundled idna to 2.2.







2.12.5 (2017-01-18)

Bugfixes


	Fixed an issue with JSON encoding detection, specifically detecting
big-endian UTF-32 with BOM.







2.12.4 (2016-12-14)

Bugfixes


	Fixed regression from 2.12.2 where non-string types were rejected in the
basic auth parameters. While support for this behaviour has been readded,
the behaviour is deprecated and will be removed in the future.







2.12.3 (2016-12-01)

Bugfixes


	Fixed regression from v2.12.1 for URLs with schemes that begin with “http”.
These URLs have historically been processed as though they were HTTP-schemed
URLs, and so have had parameters added. This was removed in v2.12.2 in an
overzealous attempt to resolve problems with IDNA-encoding those URLs. This
change was reverted: the other fixes for IDNA-encoding have been judged to
be sufficient to return to the behaviour Requests had before v2.12.0.







2.12.2 (2016-11-30)

Bugfixes


	Fixed several issues with IDNA-encoding URLs that are technically invalid but
which are widely accepted. Requests will now attempt to IDNA-encode a URL if
it can but, if it fails, and the host contains only ASCII characters, it will
be passed through optimistically. This will allow users to opt-in to using
IDNA2003 themselves if they want to, and will also allow technically invalid
but still common hostnames.


	Fixed an issue where URLs with leading whitespace would raise
InvalidSchema errors.


	Fixed an issue where some URLs without the HTTP or HTTPS schemes would still
have HTTP URL preparation applied to them.


	Fixed an issue where Unicode strings could not be used in basic auth.


	Fixed an issue encountered by some Requests plugins where constructing a
Response object would cause Response.content to raise an
AttributeError.







2.12.1 (2016-11-16)

Bugfixes


	Updated setuptools ‘security’ extra for the new PyOpenSSL backend in urllib3.




Miscellaneous


	Updated bundled urllib3 to 1.19.1.







2.12.0 (2016-11-15)

Improvements


	Updated support for internationalized domain names from IDNA2003 to IDNA2008.
This updated support is required for several forms of IDNs and is mandatory
for .de domains.


	Much improved heuristics for guessing content lengths: Requests will no
longer read an entire StringIO into memory.


	Much improved logic for recalculating Content-Length headers for
PreparedRequest objects.


	Improved tolerance for file-like objects that have no tell method but
do have a seek method.


	Anything that is a subclass of Mapping is now treated like a dictionary
by the data= keyword argument.


	Requests now tolerates empty passwords in proxy credentials, rather than
stripping the credentials.


	If a request is made with a file-like object as the body and that request is
redirected with a 307 or 308 status code, Requests will now attempt to
rewind the body object so it can be replayed.




Bugfixes


	When calling response.close, the call to close will be propagated
through to non-urllib3 backends.


	Fixed issue where the ALL_PROXY environment variable would be preferred
over scheme-specific variables like HTTP_PROXY.


	Fixed issue where non-UTF8 reason phrases got severely mangled by falling
back to decoding using ISO 8859-1 instead.


	Fixed a bug where Requests would not correctly correlate cookies set when
using custom Host headers if those Host headers did not use the native
string type for the platform.




Miscellaneous


	Updated bundled urllib3 to 1.19.


	Updated bundled certifi certs to 2016.09.26.







2.11.1 (2016-08-17)

Bugfixes


	Fixed a bug when using iter_content with decode_unicode=True for
streamed bodies would raise AttributeError. This bug was introduced in
2.11.


	Strip Content-Type and Transfer-Encoding headers from the header block when
following a redirect that transforms the verb from POST/PUT to GET.







2.11.0 (2016-08-08)

Improvements


	Added support for the ALL_PROXY environment variable.


	Reject header values that contain leading whitespace or newline characters to
reduce risk of header smuggling.




Bugfixes


	Fixed occasional TypeError when attempting to decode a JSON response that
occurred in an error case. Now correctly returns a ValueError.


	Requests would incorrectly ignore a non-CIDR IP address in the NO_PROXY
environment variables: Requests now treats it as a specific IP.


	Fixed a bug when sending JSON data that could cause us to encounter obscure
OpenSSL errors in certain network conditions (yes, really).


	Added type checks to ensure that iter_content only accepts integers and
None for chunk sizes.


	Fixed issue where responses whose body had not been fully consumed would have
the underlying connection closed but not returned to the connection pool,
which could cause Requests to hang in situations where the HTTPAdapter
had been configured to use a blocking connection pool.




Miscellaneous


	Updated bundled urllib3 to 1.16.


	Some previous releases accidentally accepted non-strings as acceptable header values. This release does not.







2.10.0 (2016-04-29)

New Features


	SOCKS Proxy Support! (requires PySocks; $ pip install requests[socks])




Miscellaneous


	Updated bundled urllib3 to 1.15.1.







2.9.2 (2016-04-29)

Improvements


	Change built-in CaseInsensitiveDict (used for headers) to use OrderedDict
as its underlying datastore.




Bugfixes


	Don’t use redirect_cache if allow_redirects=False


	When passed objects that throw exceptions from tell(), send them via
chunked transfer encoding instead of failing.


	Raise a ProxyError for proxy related connection issues.







2.9.1 (2015-12-21)

Bugfixes


	Resolve regression introduced in 2.9.0 that made it impossible to send binary
strings as bodies in Python 3.


	Fixed errors when calculating cookie expiration dates in certain locales.




Miscellaneous


	Updated bundled urllib3 to 1.13.1.







2.9.0 (2015-12-15)

Minor Improvements (Backwards compatible)


	The verify keyword argument now supports being passed a path to a
directory of CA certificates, not just a single-file bundle.


	Warnings are now emitted when sending files opened in text mode.


	Added the 511 Network Authentication Required status code to the status code
registry.




Bugfixes


	For file-like objects that are not seeked to the very beginning, we now
send the content length for the number of bytes we will actually read, rather
than the total size of the file, allowing partial file uploads.


	When uploading file-like objects, if they are empty or have no obvious
content length we set Transfer-Encoding: chunked rather than
Content-Length: 0.


	We correctly receive the response in buffered mode when uploading chunked
bodies.


	We now handle being passed a query string as a bytestring on Python 3, by
decoding it as UTF-8.


	Sessions are now closed in all cases (exceptional and not) when using the
functional API rather than leaking and waiting for the garbage collector to
clean them up.


	Correctly handle digest auth headers with a malformed qop directive that
contains no token, by treating it the same as if no qop directive was
provided at all.


	Minor performance improvements when removing specific cookies by name.




Miscellaneous


	Updated urllib3 to 1.13.







2.8.1 (2015-10-13)

Bugfixes


	Update certificate bundle to match certifi 2015.9.6.2’s weak certificate
bundle.


	Fix a bug in 2.8.0 where requests would raise ConnectTimeout instead of
ConnectionError


	When using the PreparedRequest flow, requests will now correctly respect the
json parameter. Broken in 2.8.0.


	When using the PreparedRequest flow, requests will now correctly handle a
Unicode-string method name on Python 2. Broken in 2.8.0.







2.8.0 (2015-10-05)

Minor Improvements (Backwards Compatible)


	Requests now supports per-host proxies. This allows the proxies
dictionary to have entries of the form
{'<scheme>://<hostname>': '<proxy>'}. Host-specific proxies will be used
in preference to the previously-supported scheme-specific ones, but the
previous syntax will continue to work.


	Response.raise_for_status now prints the URL that failed as part of the
exception message.


	requests.utils.get_netrc_auth now takes an raise_errors kwarg,
defaulting to False. When True, errors parsing .netrc files cause
exceptions to be thrown.


	Change to bundled projects import logic to make it easier to unbundle
requests downstream.


	Changed the default User-Agent string to avoid leaking data on Linux: now
contains only the requests version.




Bugfixes


	The json parameter to post() and friends will now only be used if
neither data nor files are present, consistent with the
documentation.


	We now ignore empty fields in the NO_PROXY environment variable.


	Fixed problem where httplib.BadStatusLine would get raised if combining
stream=True with contextlib.closing.


	Prevented bugs where we would attempt to return the same connection back to
the connection pool twice when sending a Chunked body.


	Miscellaneous minor internal changes.


	Digest Auth support is now thread safe.




Updates


	Updated urllib3 to 1.12.







2.7.0 (2015-05-03)

This is the first release that follows our new release process. For more, see
our documentation [http://docs.python-requests.org/en/latest/community/release-process/].

Bugfixes


	Updated urllib3 to 1.10.4, resolving several bugs involving chunked transfer
encoding and response framing.







2.6.2 (2015-04-23)

Bugfixes


	Fix regression where compressed data that was sent as chunked data was not
properly decompressed. (#2561)







2.6.1 (2015-04-22)

Bugfixes


	Remove VendorAlias import machinery introduced in v2.5.2.


	Simplify the PreparedRequest.prepare API: We no longer require the user to
pass an empty list to the hooks keyword argument. (c.f. #2552)


	Resolve redirects now receives and forwards all of the original arguments to
the adapter. (#2503)


	Handle UnicodeDecodeErrors when trying to deal with a unicode URL that
cannot be encoded in ASCII. (#2540)


	Populate the parsed path of the URI field when performing Digest
Authentication. (#2426)


	Copy a PreparedRequest’s CookieJar more reliably when it is not an instance
of RequestsCookieJar. (#2527)







2.6.0 (2015-03-14)

Bugfixes


	CVE-2015-2296: Fix handling of cookies on redirect. Previously a cookie
without a host value set would use the hostname for the redirected URL
exposing requests users to session fixation attacks and potentially cookie
stealing. This was disclosed privately by Matthew Daley of
BugFuzz [https://bugfuzz.com]. This affects all versions of requests from
v2.1.0 to v2.5.3 (inclusive on both ends).


	Fix error when requests is an install_requires dependency and python
setup.py test is run. (#2462)


	Fix error when urllib3 is unbundled and requests continues to use the
vendored import location.


	Include fixes to urllib3’s header handling.


	Requests’ handling of unvendored dependencies is now more restrictive.




Features and Improvements


	Support bytearrays when passed as parameters in the files argument.
(#2468)


	Avoid data duplication when creating a request with str, bytes, or
bytearray input to the files argument.







2.5.3 (2015-02-24)

Bugfixes


	Revert changes to our vendored certificate bundle. For more context see
(#2455, #2456, and http://bugs.python.org/issue23476)







2.5.2 (2015-02-23)

Features and Improvements


	Add sha256 fingerprint support. (shazow/urllib3#540 [https://github.com/shazow/urllib3/pull/540])


	Improve the performance of headers. (shazow/urllib3#544 [https://github.com/shazow/urllib3/pull/544])




Bugfixes


	Copy pip’s import machinery. When downstream redistributors remove
requests.packages.urllib3 the import machinery will continue to let those
same symbols work. Example usage in requests’ documentation and 3rd-party
libraries relying on the vendored copies of urllib3 will work without having
to fallback to the system urllib3.


	Attempt to quote parts of the URL on redirect if unquoting and then quoting
fails. (#2356)


	Fix filename type check for multipart form-data uploads. (#2411)


	Properly handle the case where a server issuing digest authentication
challenges provides both auth and auth-int qop-values. (#2408)


	Fix a socket leak. (shazow/urllib3#549 [https://github.com/shazow/urllib3/pull/549])


	Fix multiple Set-Cookie headers properly. (shazow/urllib3#534 [https://github.com/shazow/urllib3/pull/534])


	Disable the built-in hostname verification. (shazow/urllib3#526 [https://github.com/shazow/urllib3/pull/526])


	Fix the behaviour of decoding an exhausted stream. (shazow/urllib3#535 [https://github.com/shazow/urllib3/pull/535])




Security


	Pulled in an updated cacert.pem.


	Drop RC4 from the default cipher list. (shazow/urllib3#551 [https://github.com/shazow/urllib3/pull/551])







2.5.1 (2014-12-23)

Behavioural Changes


	Only catch HTTPErrors in raise_for_status (#2382)




Bugfixes


	Handle LocationParseError from urllib3 (#2344)


	Handle file-like object filenames that are not strings (#2379)


	Unbreak HTTPDigestAuth handler. Allow new nonces to be negotiated (#2389)







2.5.0 (2014-12-01)

Improvements


	Allow usage of urllib3’s Retry object with HTTPAdapters (#2216)


	The iter_lines method on a response now accepts a delimiter with which
to split the content (#2295)




Behavioural Changes


	Add deprecation warnings to functions in requests.utils that will be removed
in 3.0 (#2309)


	Sessions used by the functional API are always closed (#2326)


	Restrict requests to HTTP/1.1 and HTTP/1.0 (stop accepting HTTP/0.9) (#2323)




Bugfixes


	Only parse the URL once (#2353)


	Allow Content-Length header to always be overridden (#2332)


	Properly handle files in HTTPDigestAuth (#2333)


	Cap redirect_cache size to prevent memory abuse (#2299)


	Fix HTTPDigestAuth handling of redirects after authenticating successfully
(#2253)


	Fix crash with custom method parameter to Session.request (#2317)


	Fix how Link headers are parsed using the regular expression library (#2271)




Documentation


	Add more references for interlinking (#2348)


	Update CSS for theme (#2290)


	Update width of buttons and sidebar (#2289)


	Replace references of Gittip with Gratipay (#2282)


	Add link to changelog in sidebar (#2273)







2.4.3 (2014-10-06)

Bugfixes


	Unicode URL improvements for Python 2.


	Re-order JSON param for backwards compat.


	Automatically defrag authentication schemes from host/pass URIs. (#2249 [https://github.com/requests/requests/issues/2249])







2.4.2 (2014-10-05)

Improvements


	FINALLY! Add json parameter for uploads! (#2258 [https://github.com/requests/requests/pull/2258])


	Support for bytestring URLs on Python 3.x (#2238 [https://github.com/requests/requests/pull/2238])




Bugfixes


	Avoid getting stuck in a loop (#2244 [https://github.com/requests/requests/pull/2244])


	Multiple calls to iter* fail with unhelpful error. (#2240 [https://github.com/requests/requests/issues/2240], #2241 [https://github.com/requests/requests/issues/2241])




Documentation


	Correct redirection introduction (#2245 [https://github.com/requests/requests/pull/2245/])


	Added example of how to send multiple files in one request. (#2227 [https://github.com/requests/requests/pull/2227/])


	Clarify how to pass a custom set of CAs (#2248 [https://github.com/requests/requests/pull/2248/])







2.4.1 (2014-09-09)


	Now has a “security” package extras set, $ pip install requests[security]


	Requests will now use Certifi if it is available.


	Capture and re-raise urllib3 ProtocolError


	Bugfix for responses that attempt to redirect to themselves forever (wtf?).







2.4.0 (2014-08-29)

Behavioral Changes


	Connection: keep-alive header is now sent automatically.




Improvements


	Support for connect timeouts! Timeout now accepts a tuple (connect, read) which is used to set individual connect and read timeouts.


	Allow copying of PreparedRequests without headers/cookies.


	Updated bundled urllib3 version.


	Refactored settings loading from environment – new Session.merge_environment_settings.


	Handle socket errors in iter_content.







2.3.0 (2014-05-16)

API Changes


	New Response property is_redirect, which is true when the
library could have processed this response as a redirection (whether
or not it actually did).


	The timeout parameter now affects requests with both stream=True and
stream=False equally.


	The change in v2.0.0 to mandate explicit proxy schemes has been reverted.
Proxy schemes now default to http://.


	The CaseInsensitiveDict used for HTTP headers now behaves like a normal
dictionary when references as string or viewed in the interpreter.




Bugfixes


	No longer expose Authorization or Proxy-Authorization headers on redirect.
Fix CVE-2014-1829 and CVE-2014-1830 respectively.


	Authorization is re-evaluated each redirect.


	On redirect, pass url as native strings.


	Fall-back to autodetected encoding for JSON when Unicode detection fails.


	Headers set to None on the Session are now correctly not sent.


	Correctly honor decode_unicode even if it wasn’t used earlier in the same
response.


	Stop advertising compress as a supported Content-Encoding.


	The Response.history parameter is now always a list.


	Many, many urllib3 bugfixes.







2.2.1 (2014-01-23)

Bugfixes


	Fixes incorrect parsing of proxy credentials that contain a literal or encoded ‘#’ character.


	Assorted urllib3 fixes.







2.2.0 (2014-01-09)

API Changes


	New exception: ContentDecodingError. Raised instead of urllib3
DecodeError exceptions.




Bugfixes


	Avoid many many exceptions from the buggy implementation of proxy_bypass on OS X in Python 2.6.


	Avoid crashing when attempting to get authentication credentials from ~/.netrc when running as a user without a home directory.


	Use the correct pool size for pools of connections to proxies.


	Fix iteration of CookieJar objects.


	Ensure that cookies are persisted over redirect.


	Switch back to using chardet, since it has merged with charade.







2.1.0 (2013-12-05)


	Updated CA Bundle, of course.


	Cookies set on individual Requests through a Session (e.g. via Session.get()) are no longer persisted to the Session.


	Clean up connections when we hit problems during chunked upload, rather than leaking them.


	Return connections to the pool when a chunked upload is successful, rather than leaking it.


	Match the HTTPbis recommendation for HTTP 301 redirects.


	Prevent hanging when using streaming uploads and Digest Auth when a 401 is received.


	Values of headers set by Requests are now always the native string type.


	Fix previously broken SNI support.


	Fix accessing HTTP proxies using proxy authentication.


	Unencode HTTP Basic usernames and passwords extracted from URLs.


	Support for IP address ranges for no_proxy environment variable


	Parse headers correctly when users override the default Host: header.


	Avoid munging the URL in case of case-sensitive servers.


	Looser URL handling for non-HTTP/HTTPS urls.


	Accept unicode methods in Python 2.6 and 2.7.


	More resilient cookie handling.


	Make Response objects pickleable.


	Actually added MD5-sess to Digest Auth instead of pretending to like last time.


	Updated internal urllib3.


	Fixed @Lukasa’s lack of taste.







2.0.1 (2013-10-24)


	Updated included CA Bundle with new mistrusts and automated process for the future


	Added MD5-sess to Digest Auth


	Accept per-file headers in multipart file POST messages.


	Fixed: Don’t send the full URL on CONNECT messages.


	Fixed: Correctly lowercase a redirect scheme.


	Fixed: Cookies not persisted when set via functional API.


	Fixed: Translate urllib3 ProxyError into a requests ProxyError derived from ConnectionError.


	Updated internal urllib3 and chardet.







2.0.0 (2013-09-24)

API Changes:


	Keys in the Headers dictionary are now native strings on all Python versions,
i.e. bytestrings on Python 2, unicode on Python 3.


	Proxy URLs now must have an explicit scheme. A MissingSchema exception
will be raised if they don’t.


	Timeouts now apply to read time if Stream=False.


	RequestException is now a subclass of IOError, not RuntimeError.


	Added new method to PreparedRequest objects: PreparedRequest.copy().


	Added new method to Session objects: Session.update_request(). This
method updates a Request object with the data (e.g. cookies) stored on
the Session.


	Added new method to Session objects: Session.prepare_request(). This
method updates and prepares a Request object, and returns the
corresponding PreparedRequest object.


	Added new method to HTTPAdapter objects: HTTPAdapter.proxy_headers().
This should not be called directly, but improves the subclass interface.


	httplib.IncompleteRead exceptions caused by incorrect chunked encoding
will now raise a Requests ChunkedEncodingError instead.


	Invalid percent-escape sequences now cause a Requests InvalidURL
exception to be raised.


	HTTP 208 no longer uses reason phrase "im_used". Correctly uses
"already_reported".


	HTTP 226 reason added ("im_used").




Bugfixes:


	Vastly improved proxy support, including the CONNECT verb. Special thanks to
the many contributors who worked towards this improvement.


	Cookies are now properly managed when 401 authentication responses are
received.


	Chunked encoding fixes.


	Support for mixed case schemes.


	Better handling of streaming downloads.


	Retrieve environment proxies from more locations.


	Minor cookies fixes.


	Improved redirect behaviour.


	Improved streaming behaviour, particularly for compressed data.


	Miscellaneous small Python 3 text encoding bugs.


	.netrc no longer overrides explicit auth.


	Cookies set by hooks are now correctly persisted on Sessions.


	Fix problem with cookies that specify port numbers in their host field.


	BytesIO can be used to perform streaming uploads.


	More generous parsing of the no_proxy environment variable.


	Non-string objects can be passed in data values alongside files.







1.2.3 (2013-05-25)


	Simple packaging fix







1.2.2 (2013-05-23)


	Simple packaging fix







1.2.1 (2013-05-20)


	301 and 302 redirects now change the verb to GET for all verbs, not just
POST, improving browser compatibility.


	Python 3.3.2 compatibility


	Always percent-encode location headers


	Fix connection adapter matching to be most-specific first


	new argument to the default connection adapter for passing a block argument


	prevent a KeyError when there’s no link headers







1.2.0 (2013-03-31)


	Fixed cookies on sessions and on requests


	Significantly change how hooks are dispatched - hooks now receive all the
arguments specified by the user when making a request so hooks can make a
secondary request with the same parameters. This is especially necessary for
authentication handler authors


	certifi support was removed


	Fixed bug where using OAuth 1 with body signature_type sent no data


	Major proxy work thanks to @Lukasa including parsing of proxy authentication
from the proxy url


	Fix DigestAuth handling too many 401s


	Update vendored urllib3 to include SSL bug fixes


	Allow keyword arguments to be passed to json.loads() via the
Response.json() method


	Don’t send Content-Length header by default on GET or HEAD
requests


	Add elapsed attribute to Response objects to time how long a request
took.


	Fix RequestsCookieJar


	Sessions and Adapters are now picklable, i.e., can be used with the
multiprocessing library


	Update charade to version 1.0.3




The change in how hooks are dispatched will likely cause a great deal of
issues.




1.1.0 (2013-01-10)


	CHUNKED REQUESTS


	Support for iterable response bodies


	Assume servers persist redirect params


	Allow explicit content types to be specified for file data


	Make merge_kwargs case-insensitive when looking up keys







1.0.3 (2012-12-18)


	Fix file upload encoding bug


	Fix cookie behavior







1.0.2 (2012-12-17)


	Proxy fix for HTTPAdapter.







1.0.1 (2012-12-17)


	Cert verification exception bug.


	Proxy fix for HTTPAdapter.







1.0.0 (2012-12-17)


	Massive Refactor and Simplification


	Switch to Apache 2.0 license


	Swappable Connection Adapters


	Mountable Connection Adapters


	Mutable ProcessedRequest chain


	/s/prefetch/stream


	Removal of all configuration


	Standard library logging


	Make Response.json() callable, not property.


	Usage of new charade project, which provides python 2 and 3 simultaneous chardet.


	Removal of all hooks except ‘response’


	Removal of all authentication helpers (OAuth, Kerberos)




This is not a backwards compatible change.




0.14.2 (2012-10-27)


	Improved mime-compatible JSON handling


	Proxy fixes


	Path hack fixes


	Case-Insensitive Content-Encoding headers


	Support for CJK parameters in form posts







0.14.1 (2012-10-01)


	Python 3.3 Compatibility


	Simply default accept-encoding


	Bugfixes







0.14.0 (2012-09-02)


	No more iter_content errors if already downloaded.







0.13.9 (2012-08-25)


	Fix for OAuth + POSTs


	Remove exception eating from dispatch_hook


	General bugfixes







0.13.8 (2012-08-21)


	Incredible Link header support :)







0.13.7 (2012-08-19)


	Support for (key, value) lists everywhere.


	Digest Authentication improvements.


	Ensure proxy exclusions work properly.


	Clearer UnicodeError exceptions.


	Automatic casting of URLs to strings (fURL and such)


	Bugfixes.







0.13.6 (2012-08-06)


	Long awaited fix for hanging connections!







0.13.5 (2012-07-27)


	Packaging fix







0.13.4 (2012-07-27)


	GSSAPI/Kerberos authentication!


	App Engine 2.7 Fixes!


	Fix leaking connections (from urllib3 update)


	OAuthlib path hack fix


	OAuthlib URL parameters fix.







0.13.3 (2012-07-12)


	Use simplejson if available.


	Do not hide SSLErrors behind Timeouts.


	Fixed param handling with urls containing fragments.


	Significantly improved information in User Agent.


	client certificates are ignored when verify=False







0.13.2 (2012-06-28)


	Zero dependencies (once again)!


	New: Response.reason


	Sign querystring parameters in OAuth 1.0


	Client certificates no longer ignored when verify=False


	Add openSUSE certificate support







0.13.1 (2012-06-07)


	Allow passing a file or file-like object as data.


	Allow hooks to return responses that indicate errors.


	Fix Response.text and Response.json for body-less responses.







0.13.0 (2012-05-29)


	Removal of Requests.async in favor of grequests [https://github.com/kennethreitz/grequests]


	Allow disabling of cookie persistence.


	New implementation of safe_mode


	cookies.get now supports default argument


	Session cookies not saved when Session.request is called with return_response=False


	Env: no_proxy support.


	RequestsCookieJar improvements.


	Various bug fixes.







0.12.1 (2012-05-08)


	New Response.json property.


	Ability to add string file uploads.


	Fix out-of-range issue with iter_lines.


	Fix iter_content default size.


	Fix POST redirects containing files.







0.12.0 (2012-05-02)


	EXPERIMENTAL OAUTH SUPPORT!


	Proper CookieJar-backed cookies interface with awesome dict-like interface.


	Speed fix for non-iterated content chunks.


	Move pre_request to a more usable place.


	New pre_send hook.


	Lazily encode data, params, files.


	Load system Certificate Bundle if certify isn’t available.


	Cleanups, fixes.







0.11.2 (2012-04-22)


	Attempt to use the OS’s certificate bundle if certifi isn’t available.


	Infinite digest auth redirect fix.


	Multi-part file upload improvements.


	Fix decoding of invalid %encodings in URLs.


	If there is no content in a response don’t throw an error the second time that content is attempted to be read.


	Upload data on redirects.







0.11.1 (2012-03-30)


	POST redirects now break RFC to do what browsers do: Follow up with a GET.


	New strict_mode configuration to disable new redirect behavior.







0.11.0 (2012-03-14)


	Private SSL Certificate support


	Remove select.poll from Gevent monkeypatching


	Remove redundant generator for chunked transfer encoding


	Fix: Response.ok raises Timeout Exception in safe_mode







0.10.8 (2012-03-09)


	Generate chunked ValueError fix


	Proxy configuration by environment variables


	Simplification of iter_lines.


	New trust_env configuration for disabling system/environment hints.


	Suppress cookie errors.







0.10.7 (2012-03-07)


	encode_uri = False







0.10.6 (2012-02-25)


	Allow ‘=’ in cookies.







0.10.5 (2012-02-25)


	Response body with 0 content-length fix.


	New async.imap.


	Don’t fail on netrc.







0.10.4 (2012-02-20)


	Honor netrc.







0.10.3 (2012-02-20)


	HEAD requests don’t follow redirects anymore.


	raise_for_status() doesn’t raise for 3xx anymore.


	Make Session objects picklable.


	ValueError for invalid schema URLs.







0.10.2 (2012-01-15)


	Vastly improved URL quoting.


	Additional allowed cookie key values.


	Attempted fix for “Too many open files” Error


	Replace unicode errors on first pass, no need for second pass.


	Append ‘/’ to bare-domain urls before query insertion.


	Exceptions now inherit from RuntimeError.


	Binary uploads + auth fix.


	Bugfixes.







0.10.1 (2012-01-23)


	PYTHON 3 SUPPORT!


	Dropped 2.5 Support. (Backwards Incompatible)







0.10.0 (2012-01-21)


	Response.content is now bytes-only. (Backwards Incompatible)


	New Response.text is unicode-only.


	If no Response.encoding is specified and chardet is available, Response.text will guess an encoding.


	Default to ISO-8859-1 (Western) encoding for “text” subtypes.


	Removal of decode_unicode. (Backwards Incompatible)


	New multiple-hooks system.


	New Response.register_hook for registering hooks within the pipeline.


	Response.url is now Unicode.







0.9.3 (2012-01-18)


	SSL verify=False bugfix (apparent on windows machines).







0.9.2 (2012-01-18)


	Asynchronous async.send method.


	Support for proper chunk streams with boundaries.


	session argument for Session classes.


	Print entire hook tracebacks, not just exception instance.


	Fix response.iter_lines from pending next line.


	Fix but in HTTP-digest auth w/ URI having query strings.


	Fix in Event Hooks section.


	Urllib3 update.







0.9.1 (2012-01-06)


	danger_mode for automatic Response.raise_for_status()


	Response.iter_lines refactor







0.9.0 (2011-12-28)


	verify ssl is default.







0.8.9 (2011-12-28)


	Packaging fix.







0.8.8 (2011-12-28)


	SSL CERT VERIFICATION!


	Release of Cerifi: Mozilla’s cert list.


	New ‘verify’ argument for SSL requests.


	Urllib3 update.







0.8.7 (2011-12-24)


	iter_lines last-line truncation fix


	Force safe_mode for async requests


	Handle safe_mode exceptions more consistently


	Fix iteration on null responses in safe_mode







0.8.6 (2011-12-18)


	Socket timeout fixes.


	Proxy Authorization support.







0.8.5 (2011-12-14)


	Response.iter_lines!







0.8.4 (2011-12-11)


	Prefetch bugfix.


	Added license to installed version.







0.8.3 (2011-11-27)


	Converted auth system to use simpler callable objects.


	New session parameter to API methods.


	Display full URL while logging.







0.8.2 (2011-11-19)


	New Unicode decoding system, based on over-ridable Response.encoding.


	Proper URL slash-quote handling.


	Cookies with [, ], and _ allowed.







0.8.1 (2011-11-15)


	URL Request path fix


	Proxy fix.


	Timeouts fix.







0.8.0 (2011-11-13)


	Keep-alive support!


	Complete removal of Urllib2


	Complete removal of Poster


	Complete removal of CookieJars


	New ConnectionError raising


	Safe_mode for error catching


	prefetch parameter for request methods


	OPTION method


	Async pool size throttling


	File uploads send real names


	Vendored in urllib3







0.7.6 (2011-11-07)


	Digest authentication bugfix (attach query data to path)







0.7.5 (2011-11-04)


	Response.content = None if there was an invalid response.


	Redirection auth handling.







0.7.4 (2011-10-26)


	Session Hooks fix.







0.7.3 (2011-10-23)


	Digest Auth fix.







0.7.2 (2011-10-23)


	PATCH Fix.







0.7.1 (2011-10-23)


	Move away from urllib2 authentication handling.


	Fully Remove AuthManager, AuthObject, &c.


	New tuple-based auth system with handler callbacks.







0.7.0 (2011-10-22)


	Sessions are now the primary interface.


	Deprecated InvalidMethodException.


	PATCH fix.


	New config system (no more global settings).







0.6.6 (2011-10-19)


	Session parameter bugfix (params merging).







0.6.5 (2011-10-18)


	Offline (fast) test suite.


	Session dictionary argument merging.







0.6.4 (2011-10-13)


	Automatic decoding of unicode, based on HTTP Headers.


	New decode_unicode setting.


	Removal of r.read/close methods.


	New r.faw interface for advanced response usage.*


	Automatic expansion of parameterized headers.







0.6.3 (2011-10-13)


	Beautiful requests.async module, for making async requests w/ gevent.







0.6.2 (2011-10-09)


	GET/HEAD obeys allow_redirects=False.







0.6.1 (2011-08-20)


	Enhanced status codes experience \o/


	Set a maximum number of redirects (settings.max_redirects)


	Full Unicode URL support


	Support for protocol-less redirects.


	Allow for arbitrary request types.


	Bugfixes







0.6.0 (2011-08-17)


	New callback hook system


	New persistent sessions object and context manager


	Transparent Dict-cookie handling


	Status code reference object


	Removed Response.cached


	Added Response.request


	All args are kwargs


	Relative redirect support


	HTTPError handling improvements


	Improved https testing


	Bugfixes







0.5.1 (2011-07-23)


	International Domain Name Support!


	Access headers without fetching entire body (read())


	Use lists as dicts for parameters


	Add Forced Basic Authentication


	Forced Basic is default authentication type


	python-requests.org default User-Agent header


	CaseInsensitiveDict lower-case caching


	Response.history bugfix







0.5.0 (2011-06-21)


	PATCH Support


	Support for Proxies


	HTTPBin Test Suite


	Redirect Fixes


	settings.verbose stream writing


	Querystrings for all methods


	URLErrors (Connection Refused, Timeout, Invalid URLs) are treated as explicitly raised
r.requests.get('hwe://blah'); r.raise_for_status()







0.4.1 (2011-05-22)


	Improved Redirection Handling


	New ‘allow_redirects’ param for following non-GET/HEAD Redirects


	Settings module refactoring







0.4.0 (2011-05-15)


	Response.history: list of redirected responses


	Case-Insensitive Header Dictionaries!


	Unicode URLs







0.3.4 (2011-05-14)


	Urllib2 HTTPAuthentication Recursion fix (Basic/Digest)


	Internal Refactor


	Bytes data upload Bugfix







0.3.3 (2011-05-12)


	Request timeouts


	Unicode url-encoded data


	Settings context manager and module







0.3.2 (2011-04-15)


	Automatic Decompression of GZip Encoded Content


	AutoAuth Support for Tupled HTTP Auth







0.3.1 (2011-04-01)


	Cookie Changes


	Response.read()


	Poster fix







0.3.0 (2011-02-25)


	Automatic Authentication API Change


	Smarter Query URL Parameterization


	Allow file uploads and POST data together


	
	New Authentication Manager System

	
	Simpler Basic HTTP System


	Supports all build-in urllib2 Auths


	Allows for custom Auth Handlers















0.2.4 (2011-02-19)


	Python 2.5 Support


	PyPy-c v1.4 Support


	Auto-Authentication tests


	Improved Request object constructor







0.2.3 (2011-02-15)


	
	New HTTPHandling Methods

	
	Response.__nonzero__ (false if bad HTTP Status)


	Response.ok (True if expected HTTP Status)


	Response.error (Logged HTTPError if bad HTTP Status)


	Response.raise_for_status() (Raises stored HTTPError)















0.2.2 (2011-02-14)


	Still handles request in the event of an HTTPError. (Issue #2)


	Eventlet and Gevent Monkeypatch support.


	Cookie Support (Issue #1)







0.2.1 (2011-02-14)


	Added file attribute to POST and PUT requests for multipart-encode file uploads.


	Added Request.url attribute for context and redirects







0.2.0 (2011-02-14)


	Birth!







0.0.1 (2011-02-13)


	Frustration


	Conception












          

      

      

    

  

  
    
    Code of Conduct
    

    

    

    

    
 
  

    
      
          
            
  [image: ../../../../../_images/setuptools.svg]
 [https://pypi.org/project/setuptools][image: ../../../../../_images/303a126c2374dbe30d86e477293367df6713fcdd.svg]
 [https://setuptools.readthedocs.io][image: ../../../../../_images/master1.svg]
 [https://travis-ci.org/pypa/setuptools][image: ../../../../../_images/master2.svg]
 [https://ci.appveyor.com/project/jaraco/setuptools/branch/master][image: ../../../../../_images/setuptools1.svg]See the Installation Instructions [https://packaging.python.org/installing/] in the Python Packaging
User’s Guide for instructions on installing, upgrading, and uninstalling
Setuptools.

The project is maintained at GitHub [https://github.com/pypa/setuptools].

Questions and comments should be directed to the distutils-sig
mailing list [http://mail.python.org/pipermail/distutils-sig/].
Bug reports and especially tested patches may be
submitted directly to the bug tracker [https://github.com/pypa/setuptools/issues].


Code of Conduct

Everyone interacting in the setuptools project’s codebases, issue trackers,
chat rooms, and mailing lists is expected to follow the
PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].





          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  [image: ../../../../../_images/six.svg]
 [https://pypi.python.org/pypi/six][image: ../../../../../_images/six1.svg]
 [https://travis-ci.org/benjaminp/six][image: ../../../../../_images/license-MIT-green.svg]
 [https://github.com/benjaminp/six/blob/master/LICENSE]Six is a Python 2 and 3 compatibility library.  It provides utility functions
for smoothing over the differences between the Python versions with the goal of
writing Python code that is compatible on both Python versions.  See the
documentation for more information on what is provided.

Six supports every Python version since 2.6.  It is contained in only one Python
file, so it can be easily copied into your project. (The copyright and license
notice must be retained.)

Online documentation is at http://six.rtfd.org.

Bugs can be reported to https://github.com/benjaminp/six.  The code can also
be found there.

For questions about six or porting in general, email the python-porting mailing
list: https://mail.python.org/mailman/listinfo/python-porting



          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  It includes following language algorithms:


	Danish


	Dutch


	English (Standard, Porter)


	Finnish


	French


	German


	Hungarian


	Italian


	Norwegian


	Portuguese


	Romanian


	Russian


	Spanish


	Swedish


	Turkish




This is a pure Python stemming library. If PyStemmer [http://pypi.python.org/pypi/PyStemmer] is available, this module uses
it to accelerate.



          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  {{ fullname | escape | underline}}



          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  {{ fullname | escape | underline}}



          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  {{ fullname | escape | underline}}



          

      

      

    

  

  
    
    Sphinx Bootstrap Theme
    

    

    

    

    
 
  

    
      
          
            
  
Sphinx Bootstrap Theme

This Sphinx [http://sphinx-doc.org/] theme [http://sphinx-doc.org/theming.html] integrates the Bootstrap [http://getbootstrap.com/] CSS / JavaScript
framework with various layout options, hierarchical menu navigation,
and mobile-friendly responsive design. It is configurable, extensible,
and can use any number of different Bootswatch [http://bootswatch.com] CSS themes.


Introduction and Demos

The theme is introduced and discussed in the following posts:


	12/09/2011 - Twitter Bootstrap Theme for Sphinx [http://loose-bits.com/2011/12/09/sphinx-twitter-bootstrap-theme.html]


	11/19/2012 - Sphinx Bootstrap Theme Updates - Mobile, Dropdowns, and More [http://loose-bits.com/2012/11/19/sphinx-bootstrap-theme-updates.html]


	2/12/2013 - Sphinx Bootstrap Theme 0.1.6 - Bootstrap and Other Updates [http://loose-bits.com/2013/02/12/sphinx-bootstrap-theme-updates.html]


	4/10/2013 - Sphinx Bootstrap Theme 0.2.0 - Now with Bootswatch! [http://loose-bits.com/2013/04/10/sphinx-bootstrap-theme-bootswatch.html]


	9/8/2013 - Sphinx Bootstrap Theme 0.3.0 - Bootstrap v3 and more! [http://loose-bits.com/2013/09/08/sphinx-bootstrap-theme-bootstrap-3.html]




Examples of the theme in use for some public projects:


	Sphinx Bootstrap Theme [http://ryan-roemer.github.com/sphinx-bootstrap-theme]: This project, with the theme option
'bootswatch_theme': "sandstone" to use the “Sandstone [http://bootswatch.com/sandstone]” Bootswatch [http://bootswatch.com] theme.


	Django Cloud Browser [http://ryan-roemer.github.com/django-cloud-browser]: A Django reusable app for browsing cloud
datastores (e.g., Amazon Web Services S3).


	C++ Format [http://cppformat.readthedocs.org]: Small, safe and fast formatting library for C++.




The theme demo website also includes an examples page [http://ryan-roemer.github.com/sphinx-bootstrap-theme/examples.html] for some useful
illustrations of getting Sphinx to play nicely with Bootstrap (also take a
look at the examples source [http://ryan-roemer.github.com/sphinx-bootstrap-theme/_sources/examples.txt] for the underlying reStructuredText).




Installation

Installation from PyPI [http://pypi.python.org/pypi/sphinx-bootstrap-theme/] is fairly straightforward:


	Install the package:

$ pip install sphinx_bootstrap_theme







	Edit the “conf.py” configuration file to point to the bootstrap theme:

# At the top.
import sphinx_bootstrap_theme

# ...

# Activate the theme.
html_theme = 'bootstrap'
html_theme_path = sphinx_bootstrap_theme.get_html_theme_path()












Customization

The theme can be customized in varying ways (some a little more work than others).


Theme Options

The theme provides many built-in options that can be configured by editing
your “conf.py” file:

# (Optional) Logo. Should be small enough to fit the navbar (ideally 24x24).
# Path should be relative to the ``_static`` files directory.
html_logo = "my_logo.png"

# Theme options are theme-specific and customize the look and feel of a
# theme further.
html_theme_options = {
    # Navigation bar title. (Default: ``project`` value)
    'navbar_title': "Demo",

    # Tab name for entire site. (Default: "Site")
    'navbar_site_name': "Site",

    # A list of tuples containing pages or urls to link to.
    # Valid tuples should be in the following forms:
    #    (name, page)                 # a link to a page
    #    (name, "/aa/bb", 1)          # a link to an arbitrary relative url
    #    (name, "http://example.com", True) # arbitrary absolute url
    # Note the "1" or "True" value above as the third argument to indicate
    # an arbitrary url.
    'navbar_links': [
        ("Examples", "examples"),
        ("Link", "http://example.com", True),
    ],

    # Render the next and previous page links in navbar. (Default: true)
    'navbar_sidebarrel': True,

    # Render the current pages TOC in the navbar. (Default: true)
    'navbar_pagenav': True,

    # Tab name for the current pages TOC. (Default: "Page")
    'navbar_pagenav_name': "Page",

    # Global TOC depth for "site" navbar tab. (Default: 1)
    # Switching to -1 shows all levels.
    'globaltoc_depth': 2,

    # Include hidden TOCs in Site navbar?
    #
    # Note: If this is "false", you cannot have mixed ``:hidden:`` and
    # non-hidden ``toctree`` directives in the same page, or else the build
    # will break.
    #
    # Values: "true" (default) or "false"
    'globaltoc_includehidden': "true",

    # HTML navbar class (Default: "navbar") to attach to <div> element.
    # For black navbar, do "navbar navbar-inverse"
    'navbar_class': "navbar navbar-inverse",

    # Fix navigation bar to top of page?
    # Values: "true" (default) or "false"
    'navbar_fixed_top': "true",

    # Location of link to source.
    # Options are "nav" (default), "footer" or anything else to exclude.
    'source_link_position': "nav",

    # Bootswatch (http://bootswatch.com/) theme.
    #
    # Options are nothing (default) or the name of a valid theme
    # such as "cosmo" or "sandstone".
    #
    # The set of valid themes depend on the version of Bootstrap
    # that's used (the next config option).
    #
    # Currently, the supported themes are:
    # - Bootstrap 2: https://bootswatch.com/2
    # - Bootstrap 3: https://bootswatch.com/3
    'bootswatch_theme': "united",

    # Choose Bootstrap version.
    # Values: "3" (default) or "2" (in quotes)
    'bootstrap_version': "3",
}





Note for the navigation bar title that if you don’t specify a theme option of
navbar_title that the “conf.py” project string will be used. We don’t
use the html_title or html_short_title values because by default those
both contain version strings, which the navigation bar treats differently.




Bootstrap Versions

The theme supports Bootstrap v2.3.2 and v3.3.7 via the
bootstrap_version theme option (of "2" or "3"). Some notes
regarding version differences:


	Bootstrap 3 has dropped support for sub-menus [http://stackoverflow.com/questions/18023493], so while supported by this
theme, they will not show up in site or page menus.


	Internally, “navbar.html” is the Sphinx template used for Bootstrap v3 and
“navbar-2.html” is the template used for v2.


	If you are unsure what to choose, choose Bootstrap 3.  If you experience some
form of compatibility issues, then try and use Bootstrap 2.







Extending “layout.html”

As a more “hands on” approach to customization, you can override any template
in this Sphinx theme or any others. A good candidate for changes is
“layout.html”, which provides most of the look and feel. First, take a look
at the “layout.html” file that the theme provides, and figure out
what you need to override. As a side note, we have some theme-specific
enhancements, such as the navbarextra template block for additional
content in the navbar.

Then, create your own “_templates” directory and “layout.html” file (assuming
you build from a “source” directory):

$ mkdir source/_templates
$ touch source/_templates/layout.html





Then, configure your “conf.py”:

templates_path = ['_templates']





Finally, edit your override file “source/_templates/layout.html”:

{# Import the theme's layout. #}
{% extends "!layout.html" %}

{# Add some extra stuff before and use existing with 'super()' call. #}
{% block footer %}
  <h2>My footer of awesomeness.</h2>
  {{ super() }}
{% endblock %}








Adding Custom CSS

Alternately, you could add your own custom static media directory with a CSS
file to override a style, which in the demo would be something like:

$ mkdir source/_static
$ touch source/_static/my-styles.css





In the new file “source/_static/my-styles.css”, add any appropriate styling,
e.g. a bold background color:

footer {
  background-color: red;
}





Then, in “conf.py”, edit this line:

html_static_path = ["_static"]





From there it depends on which version of Sphinx you are using:

Sphinx <= 1.5

You will need the override template “source/_templates/layout.html” file
configured as above, but with the following code:

{# Import the theme's layout. #}
{% extends "!layout.html" %}

{# Custom CSS overrides #}
{% set css_files = css_files + ['_static/my-styles.css'] %}






Note

See Issue #159 [https://github.com/ryan-roemer/sphinx-bootstrap-theme/pull/159]
for more information.



Sphinx >= 1.6.1

Add a setup function in “conf.py” with stylesheet paths added relative to the
static path:

def setup(app):
    app.add_stylesheet("my-styles.css") # also can be a full URL
    # app.add_stylesheet("ANOTHER.css")
    # app.add_stylesheet("AND_ANOTHER.css")






Tip

Sphinx automatically calls your setup function defined in “conf.py” during
the build process for you.  There is no need to, nor should you, call this
function directly in your code.








Theme Notes


Sphinx

The theme places the global TOC, local TOC, navigation (prev, next) and
source links all in the top Bootstrap navigation bar, along with the Sphinx
search bar on the left side.

The global (site-wide) table of contents is the “Site” navigation dropdown,
which is a configurable level rendering of the toctree for the entire site.
The local (page-level) table of contents is the “Page” navigation dropdown,
which is a multi-level rendering of the current page’s toc.




Bootstrap

The theme offers Bootstrap v2.x and v3.x, both of which rely on
jQuery v.1.9.x. As the jQuery that Bootstrap wants can radically depart from
the jQuery Sphinx internal libraries use, the library from this theme is
integrated via noConflict() as $jqTheme.

You can override any static JS/CSS files by dropping different versions in your
Sphinx “_static” directory.






Contributing

Contributions to this project are most welcome. Please make sure that the demo
site builds cleanly, and looks like what you want. First build the demo:

$ fab clean && fab demo





Then, view the site in the development server:

$ fab demo_server





Also, if you are adding a new type of styling or Sphinx or Bootstrap construct,
please add a usage example to the “Examples” page.

Note: If you are in Python 3, Fabric isn’t available, so we have a very
rough Makefile in its place. Try:

$ make clean && make demo





Then, view the site in the development server:

$ make demo_server








Licenses

Sphinx Bootstrap Theme is licensed under the MIT [https://github.com/ryan-roemer/sphinx-bootstrap-theme/blob/master/LICENSE.txt] license.

Bootstrap v2 [https://github.com/twbs/bootstrap/blob/v2.3.2/LICENSE] is licensed under the Apache license 2.0.

Bootstrap v3.1.0+ [https://github.com/twbs/bootstrap/blob/master/LICENSE] is licensed under the MIT license.







          

      

      

    

  

  
    
    Read the Docs Sphinx Theme
    

    

    

    

    
 
  

    
      
          
            
  
Read the Docs Sphinx Theme


Contents


	Read the Docs Sphinx Theme


	Installation


	Via package


	Via git or download






	Configuration


	Project-wide configuration


	Page-level configuration






	Changelog


	master


	v0.2.4


	v0.2.3


	v0.2.2


	v0.2.1


	v0.2.0


	v0.1.10-alpha


	v0.1.9


	v0.1.8






	How the Table of Contents builds


	Contributing or modifying the theme


	Set up your environment


	Before you create an issue


	Before you send a Pull Request






	Using this theme locally, then building on Read the Docs?


	TODO










View a working demo [http://docs.readthedocs.org] over on readthedocs.org [http://www.readthedocs.org].

This is a mobile-friendly sphinx [http://www.sphinx-doc.org] theme I made for readthedocs.org [http://www.readthedocs.org].

If you’d like to update the theme,
please make your edits to the SASS files here,
rather than the .css files on checked into the repo.

[image: buildenv/lib/python3.5/site-packages/sphinx_rtd_theme-0.2.4.dist-info/screen_mobile.png]

Installation


Via package

Download the package or add it to your requirements.txt file:

$ pip install sphinx_rtd_theme





In your conf.py file:

import sphinx_rtd_theme

html_theme = "sphinx_rtd_theme"

html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]





You may also specify a canonical url in conf.py to let search engines know
they should give higher ranking to latest version of the docs:

html_theme_options['canonical_url'] = 'http://domain.tld/latest/docs/'





The url points to the root of the documentation. It requires a trailing slash.




Via git or download

Symlink or subtree the sphinx_rtd_theme/sphinx_rtd_theme repository into your documentation at
docs/_themes/sphinx_rtd_theme then add the following two settings to your Sphinx
conf.py file:

html_theme = "sphinx_rtd_theme"
html_theme_path = ["_themes", ]










Configuration

You can configure different parts of the theme.


Project-wide configuration

The theme’s project-wide options are defined in the sphinx_rtd_theme/theme.conf
file of this repository, and can be defined in your project’s conf.py via
html_theme_options. For example:

html_theme_options = {
    'collapse_navigation': False,
    'display_version': False,
    'navigation_depth': 3,
}








Page-level configuration

Pages support metadata that changes how the theme renders.
You can currently add the following:


	:github_url: This will force the “Edit on GitHub” to the configured URL


	:bitbucket_url: This will force the “Edit on Bitbucket” to the configured URL


	:gitlab_url: This will force the “Edit on GitLab” to the configured URL









Changelog


master




v0.2.4


	Yet another patch to deal with extra builders outside Spinx, such as the
singlehtml builders from the Read the Docs Sphinx extension







v0.2.3


	Temporarily patch Sphinx issue with singlehtml builder by inspecting the
builder in template.







v0.2.2


	Roll back toctree fix in 0.2.1 (#367). This didn’t fix the issue and
introduced another bug with toctrees display.







v0.2.1


	Add the rel HTML attribute to the footer links which point to
the previous and next pages.


	Fix toctree issue caused by Sphinx singlehtml builder (#367)







v0.2.0


	Adds the comments block after the body block in the template


	Added “Edit on GitLab” support


	Many bug fixes







v0.1.10-alpha


Note

This is a pre-release version




	Removes Sphinx dependency


	Fixes hamburger on mobile display


	Adds a body_begin block to the template


	Add prev_next_buttons_location which can take the value bottom,
top, both , None and will display the “Next” and “Previous”
buttons accordingly







v0.1.9


	Intermittent scrollbar visibility bug fixed. This change introduces a
backwards incompatible change to the theme’s layout HTML. This should only be
a problem for derivative themes that have overridden styling of nav elements
using direct decendant selectors. See #215 [https://github.com/snide/sphinx_rtd_theme/pull/215] for more information.


	Safari overscroll bug fixed


	Version added to the nav header


	Revision id was added to the documentation footer if you are using RTD


	An extra block, extrafooter was added to allow extra content in the
document footer block


	Fixed modernizr URL


	Small display style changes on code blocks, figure captions, and nav elements







v0.1.8


	Start keeping changelog :)


	Support for third and fourth level headers in the sidebar


	Add support for Sphinx 1.3


	Add sidebar headers for :caption: in Sphinx toctree


	Clean up sidebar scrolling behavior so it never scrolls out of view









How the Table of Contents builds

Currently the left menu will build based upon any toctree(s) defined in your index.rst file.
It outputs 2 levels of depth, which should give your visitors a high level of access to your
docs. If no toctrees are set the theme reverts to sphinx’s usual local toctree.

It’s important to note that if you don’t follow the same styling for your rST headers across
your documents, the toctree will misbuild, and the resulting menu might not show the correct
depth when it renders.

Also note that the table of contents is set with includehidden=true. This allows you
to set a hidden toc in your index file with the hidden [http://sphinx-doc.org/markup/toctree.html] property that will allow you
to build a toc without it rendering in your index.

By default, the navigation will “stick” to the screen as you scroll. However if your toc
is vertically too large, it will revert to static positioning. To disable the sticky nav
altogether change the setting in conf.py.




Contributing or modifying the theme

The sphinx_rtd_theme is primarily a sass [http://www.sass-lang.com] project that requires a few other sass libraries. I’m
using bower [http://www.bower.io] to manage these dependencies and sass [http://www.sass-lang.com] to build the css. The good news is
I have a very nice set of grunt [http://www.gruntjs.com] operations that will not only load these dependencies, but watch
for changes, rebuild the sphinx demo docs and build a distributable version of the theme.
The bad news is this means you’ll need to set up your environment similar to that
of a front-end developer (vs. that of a python developer). That means installing node and ruby.


Set up your environment


	Install sphinx [http://www.sphinx-doc.org] into a virtual environment.




pip install sphinx






	Install sass




gem install sass






	Install node, bower and grunt.




// Install node
brew install node

// Install bower and grunt
npm install -g bower grunt-cli

// Now that everything is installed, let's install the theme dependecies.
npm install





Now that our environment is set up, make sure you’re in your virtual environment, go to
this repository in your terminal and run grunt:

grunt





This default task will do the following very cool things that make it worth the trouble.


	It’ll install and update any bower dependencies.


	It’ll run sphinx and build new docs.


	It’ll watch for changes to the sass files and build css from the changes.


	It’ll rebuild the sphinx docs anytime it notices a change to .rst, .html, .js
or .css files.







Before you create an issue

I don’t have a lot of time to maintain this project due to other responsibilities.
I know there are a lot of Python engineers out there that can’t code sass / css and
are unable to submit pull requests. That said, submitting random style bugs without
at least providing sample documentation that replicates your problem is a good
way for me to ignore your request. RST unfortunately can spit out a lot of things
in a lot of ways. I don’t have time to research your problem for you, but I do
have time to fix the actual styling issue if you can replicate the problem for me.




Before you send a Pull Request

When you’re done with your edits, you can run grunt build to clean out the old
files and rebuild a new distribution, compressing the css and cleaning out
extraneous files. Please do this before you send in a PR.






Using this theme locally, then building on Read the Docs?

Currently if you import sphinx_rtd_theme in your local sphinx build, then pass
that same config to Read the Docs, it will fail, since RTD gets confused. If
you want to run this theme locally and then also have it build on RTD, then
you can add something like this to your config. Thanks to Daniel Oaks for this.

# on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd:  # only import and set the theme if we're building docs locally
    import sphinx_rtd_theme
    html_theme = 'sphinx_rtd_theme'
    html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

# otherwise, readthedocs.org uses their theme by default, so no need to specify it








TODO


	Separate some sass variables at the theme level so you can overwrite some basic colors.










          

      

      

    

  

  
    
    sphinxcontrib-images
    

    

    

    

    
 
  

    
      
          
            
  
sphinxcontrib-images

sphinxcontrib-images (formerly sphinxcontrib-fancybox [https://pypi.python.org/pypi/sphinxcontrib-fancybox]).

Easy sphinx thumbnails (focused on HTML).


	Documentation [https://pythonhosted.org/sphinxcontrib-images],


	Repository (GitHub) [https://github.com/spinus/sphinxcontrib-images/],


	PyPI [https://pypi.python.org/pypi/sphinxcontrib-images/].


	TravisCI <https://travis-ci.org/spinus/sphinxcontrib-images>

[image: ../../../../../_images/sphinxcontrib-images.svg]
 [https://travis-ci.org/spinus/sphinxcontrib-images]




Features


	Show thumbnails instead of full size images inside documentation (HTML).


	Ability to zoom/enlarge picture using LightBox2 (HTML).


	Ability to group pictures


	Download remote pictures and keep it in cache (if requested)


	Support for other formats (latex, epub, … - fallback to image directive)


	Easy to extend (add own backend in only few lines of code)
* Add other HTML “preview” solution than LightBox2
* Add better support to non-HTML outputs
* Preprocess images





TODO


	Make proper thumbnails (scale down images)









How to install?

Instalation through pip:

pip install sphinxcontrib-images





or through the GitHub:

pip install git+https://github.com/spinus/sphinxcontrib-images





Next, you have to add extension to conf.py in your sphinx project.

extensions = [
          …
          'sphinxcontrib.images',
          …
          ]








How to use it?

Example:

.. thumbnail:: picture.png





You can also override default image directive provided by sphinx.
Check the documentation for all configuration options.




Questions and suggestions

If you have any suggstions, patches, problems - please use
GitHub Issues [https://github.com/spinus/sphinxcontrib-images/issues].







          

      

      

    

  

  
    
    <no title>
    

    

    

    

    
 
  

    
      
          
            
  sphinxcontrib-webuspport provides a Python API to easily integrate Sphinx
documentation into your Web application.



          

      

      

    

  

  
    
    urllib3
    

    

    

    

    
 
  

    
      
          
            
  
urllib3

[image: Build status on Travis]
 [https://travis-ci.org/shazow/urllib3][image: Build status on AppVeyor]
 [https://ci.appveyor.com/project/shazow/urllib3][image: Documentation Status]
 [https://urllib3.readthedocs.io/en/latest/][image: Coverage Status]
 [https://codecov.io/gh/shazow/urllib3][image: PyPI version]
 [https://pypi.python.org/pypi/urllib3][image: Bountysource]
 [https://www.bountysource.com/trackers/192525-urllib3?utm_source=192525&utm_medium=shield&utm_campaign=TRACKER_BADGE]urllib3 is a powerful, sanity-friendly HTTP client for Python. Much of the
Python ecosystem already uses urllib3 and you should too.
urllib3 brings many critical features that are missing from the Python
standard libraries:


	Thread safety.


	Connection pooling.


	Client-side SSL/TLS verification.


	File uploads with multipart encoding.


	Helpers for retrying requests and dealing with HTTP redirects.


	Support for gzip and deflate encoding.


	Proxy support for HTTP and SOCKS.


	100% test coverage.




urllib3 is powerful and easy to use:

>>> import urllib3
>>> http = urllib3.PoolManager()
>>> r = http.request('GET', 'http://httpbin.org/robots.txt')
>>> r.status
200
>>> r.data
'User-agent: *\nDisallow: /deny\n'






Installing

urllib3 can be installed with pip [https://pip.pypa.io]:

$ pip install urllib3





Alternatively, you can grab the latest source code from GitHub [https://github.com/shazow/urllib3]:

$ git clone git://github.com/shazow/urllib3.git
$ python setup.py install








Documentation

urllib3 has usage and reference documentation at urllib3.readthedocs.io [https://urllib3.readthedocs.io].




Contributing

urllib3 happily accepts contributions. Please see our
contributing documentation [https://urllib3.readthedocs.io/en/latest/contributing.html]
for some tips on getting started.




Maintainers


	@lukasa [https://github.com/lukasa] (Cory Benfield)


	@sigmavirus24 [https://github.com/sigmavirus24] (Ian Cordasco)


	@shazow [https://github.com/shazow] (Andrey Petrov)




👋




Sponsorship

If your company benefits from this library, please consider sponsoring its
development [https://urllib3.readthedocs.io/en/latest/contributing.html#sponsorship].






Changes


1.22 (2017-07-20)


	Fixed missing brackets in HTTP CONNECT when connecting to IPv6 address via
IPv6 proxy. (Issue #1222)


	Made the connection pool retry on SSLError.  The original SSLError
is available on MaxRetryError.reason. (Issue #1112)


	Drain and release connection before recursing on retry/redirect.  Fixes
deadlocks with a blocking connectionpool. (Issue #1167)


	Fixed compatibility for cookiejar. (Issue #1229)


	pyopenssl: Use vendored version of six. (Issue #1231)







1.21.1 (2017-05-02)


	Fixed SecureTransport issue that would cause long delays in response body
delivery. (Pull #1154)


	Fixed regression in 1.21 that threw exceptions when users passed the
socket_options flag to the PoolManager.  (Issue #1165)


	Fixed regression in 1.21 that threw exceptions when users passed the
assert_hostname or assert_fingerprint flag to the PoolManager.
(Pull #1157)







1.21 (2017-04-25)


	Improved performance of certain selector system calls on Python 3.5 and
later. (Pull #1095)


	Resolved issue where the PyOpenSSL backend would not wrap SysCallError
exceptions appropriately when sending data. (Pull #1125)


	Selectors now detects a monkey-patched select module after import for modules
that patch the select module like eventlet, greenlet. (Pull #1128)


	Reduced memory consumption when streaming zlib-compressed responses
(as opposed to raw deflate streams). (Pull #1129)


	Connection pools now use the entire request context when constructing the
pool key. (Pull #1016)


	PoolManager.connection_from_* methods now accept a new keyword argument,
pool_kwargs, which are merged with the existing connection_pool_kw.
(Pull #1016)


	Add retry counter for status_forcelist. (Issue #1147)


	Added contrib module for using SecureTransport on macOS:
urllib3.contrib.securetransport.  (Pull #1122)


	urllib3 now only normalizes the case of http:// and https:// schemes:
for schemes it does not recognise, it assumes they are case-sensitive and
leaves them unchanged.
(Issue #1080)







1.20 (2017-01-19)


	Added support for waiting for I/O using selectors other than select,
improving urllib3’s behaviour with large numbers of concurrent connections.
(Pull #1001)


	Updated the date for the system clock check. (Issue #1005)


	ConnectionPools now correctly consider hostnames to be case-insensitive.
(Issue #1032)


	Outdated versions of PyOpenSSL now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Pull #1063)


	Outdated versions of cryptography now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Issue #1044)


	Automatically attempt to rewind a file-like body object when a request is
retried or redirected. (Pull #1039)


	Fix some bugs that occur when modules incautiously patch the queue module.
(Pull #1061)


	Prevent retries from occuring on read timeouts for which the request method
was not in the method whitelist. (Issue #1059)


	Changed the PyOpenSSL contrib module to lazily load idna to avoid
unnecessarily bloating the memory of programs that don’t need it. (Pull
#1076)


	Add support for IPv6 literals with zone identifiers. (Pull #1013)


	Added support for socks5h:// and socks4a:// schemes when working with SOCKS
proxies, and controlled remote DNS appropriately. (Issue #1035)







1.19.1 (2016-11-16)


	Fixed AppEngine import that didn’t function on Python 3.5. (Pull #1025)







1.19 (2016-11-03)


	urllib3 now respects Retry-After headers on 413, 429, and 503 responses when
using the default retry logic. (Pull #955)


	Remove markers from setup.py to assist ancient setuptools versions. (Issue
#986)


	Disallow superscripts and other integerish things in URL ports. (Issue #989)


	Allow urllib3’s HTTPResponse.stream() method to continue to work with
non-httplib underlying FPs. (Pull #990)


	Empty filenames in multipart headers are now emitted as such, rather than
being supressed. (Issue #1015)


	Prefer user-supplied Host headers on chunked uploads. (Issue #1009)







1.18.1 (2016-10-27)


	CVE-2016-9015. Users who are using urllib3 version 1.17 or 1.18 along with
PyOpenSSL injection and OpenSSL 1.1.0 must upgrade to this version. This
release fixes a vulnerability whereby urllib3 in the above configuration
would silently fail to validate TLS certificates due to erroneously setting
invalid flags in OpenSSL’s SSL_CTX_set_verify function. These erroneous
flags do not cause a problem in OpenSSL versions before 1.1.0, which
interprets the presence of any flag as requesting certificate validation.

There is no PR for this patch, as it was prepared for simultaneous disclosure
and release. The master branch received the same fix in PR #1010.








1.18 (2016-09-26)


	Fixed incorrect message for IncompleteRead exception. (PR #973)


	Accept iPAddress subject alternative name fields in TLS certificates.
(Issue #258)


	Fixed consistency of HTTPResponse.closed between Python 2 and 3.
(Issue #977)


	Fixed handling of wildcard certificates when using PyOpenSSL. (Issue #979)







1.17 (2016-09-06)


	Accept SSLContext objects for use in SSL/TLS negotiation. (Issue #835)


	ConnectionPool debug log now includes scheme, host, and port. (Issue #897)


	Substantially refactored documentation. (Issue #887)


	Used URLFetch default timeout on AppEngine, rather than hardcoding our own.
(Issue #858)


	Normalize the scheme and host in the URL parser (Issue #833)


	HTTPResponse contains the last Retry object, which now also
contains retries history. (Issue #848)


	Timeout can no longer be set as boolean, and must be greater than zero.
(PR #924)


	Removed pyasn1 and ndg-httpsclient from dependencies used for PyOpenSSL. We
now use cryptography and idna, both of which are already dependencies of
PyOpenSSL. (PR #930)


	Fixed infinite loop in stream when amt=None. (Issue #928)


	Try to use the operating system’s certificates when we are using an
SSLContext. (PR #941)


	Updated cipher suite list to allow ChaCha20+Poly1305. AES-GCM is preferred to
ChaCha20, but ChaCha20 is then preferred to everything else. (PR #947)


	Updated cipher suite list to remove 3DES-based cipher suites. (PR #958)


	Removed the cipher suite fallback to allow HIGH ciphers. (PR #958)


	Implemented length_remaining to determine remaining content
to be read. (PR #949)


	Implemented enforce_content_length to enable exceptions when
incomplete data chunks are received. (PR #949)


	Dropped connection start, dropped connection reset, redirect, forced retry,
and new HTTPS connection log levels to DEBUG, from INFO. (PR #967)







1.16 (2016-06-11)


	Disable IPv6 DNS when IPv6 connections are not possible. (Issue #840)


	Provide key_fn_by_scheme pool keying mechanism that can be
overridden. (Issue #830)


	Normalize scheme and host to lowercase for pool keys, and include
source_address. (Issue #830)


	Cleaner exception chain in Python 3 for _make_request.
(Issue #861)


	Fixed installing urllib3[socks] extra. (Issue #864)


	Fixed signature of ConnectionPool.close so it can actually safely be
called by subclasses. (Issue #873)


	Retain release_conn state across retries. (Issues #651, #866)


	Add customizable HTTPConnectionPool.ResponseCls, which defaults to
HTTPResponse but can be replaced with a subclass. (Issue #879)







1.15.1 (2016-04-11)


	Fix packaging to include backports module. (Issue #841)







1.15 (2016-04-06)


	Added Retry(raise_on_status=False). (Issue #720)


	Always use setuptools, no more distutils fallback. (Issue #785)


	Dropped support for Python 3.2. (Issue #786)


	Chunked transfer encoding when requesting with chunked=True.
(Issue #790)


	Fixed regression with IPv6 port parsing. (Issue #801)


	Append SNIMissingWarning messages to allow users to specify it in
the PYTHONWARNINGS environment variable. (Issue #816)


	Handle unicode headers in Py2. (Issue #818)


	Log certificate when there is a hostname mismatch. (Issue #820)


	Preserve order of request/response headers. (Issue #821)







1.14 (2015-12-29)


	contrib: SOCKS proxy support! (Issue #762)


	Fixed AppEngine handling of transfer-encoding header and bug
in Timeout defaults checking. (Issue #763)







1.13.1 (2015-12-18)


	Fixed regression in IPv6 + SSL for match_hostname. (Issue #761)







1.13 (2015-12-14)


	Fixed pip install urllib3[secure] on modern pip. (Issue #706)


	pyopenssl: Fixed SSL3_WRITE_PENDING error. (Issue #717)


	pyopenssl: Support for TLSv1.1 and TLSv1.2. (Issue #696)


	Close connections more defensively on exception. (Issue #734)


	Adjusted read_chunked to handle gzipped, chunk-encoded bodies without
repeatedly flushing the decoder, to function better on Jython. (Issue #743)


	Accept ca_cert_dir for SSL-related PoolManager configuration. (Issue #758)







1.12 (2015-09-03)


	Rely on six for importing httplib to work around
conflicts with other Python 3 shims. (Issue #688)


	Add support for directories of certificate authorities, as supported by
OpenSSL. (Issue #701)


	New exception: NewConnectionError, raised when we fail to establish
a new connection, usually ECONNREFUSED socket error.







1.11 (2015-07-21)


	When ca_certs is given, cert_reqs defaults to
'CERT_REQUIRED'. (Issue #650)


	pip install urllib3[secure] will install Certifi and
PyOpenSSL as dependencies. (Issue #678)


	Made HTTPHeaderDict usable as a headers input value
(Issues #632, #679)


	Added urllib3.contrib.appengine [https://urllib3.readthedocs.io/en/latest/contrib.html#google-app-engine]
which has an AppEngineManager for using URLFetch in a
Google AppEngine environment. (Issue #664)


	Dev: Added test suite for AppEngine. (Issue #631)


	Fix performance regression when using PyOpenSSL. (Issue #626)


	Passing incorrect scheme (e.g. foo://) will raise
ValueError instead of AssertionError (backwards
compatible for now, but please migrate). (Issue #640)


	Fix pools not getting replenished when an error occurs during a
request using release_conn=False. (Issue #644)


	Fix pool-default headers not applying for url-encoded requests
like GET. (Issue #657)


	log.warning in Python 3 when headers are skipped due to parsing
errors. (Issue #642)


	Close and discard connections if an error occurs during read.
(Issue #660)


	Fix host parsing for IPv6 proxies. (Issue #668)


	Separate warning type SubjectAltNameWarning, now issued once
per host. (Issue #671)


	Fix httplib.IncompleteRead not getting converted to
ProtocolError when using HTTPResponse.stream()
(Issue #674)







1.10.4 (2015-05-03)


	Migrate tests to Tornado 4. (Issue #594)


	Append default warning configuration rather than overwrite.
(Issue #603)


	Fix streaming decoding regression. (Issue #595)


	Fix chunked requests losing state across keep-alive connections.
(Issue #599)


	Fix hanging when chunked HEAD response has no body. (Issue #605)







1.10.3 (2015-04-21)


	Emit InsecurePlatformWarning when SSLContext object is missing.
(Issue #558)


	Fix regression of duplicate header keys being discarded.
(Issue #563)


	Response.stream() returns a generator for chunked responses.
(Issue #560)


	Set upper-bound timeout when waiting for a socket in PyOpenSSL.
(Issue #585)


	Work on platforms without ssl module for plain HTTP requests.
(Issue #587)


	Stop relying on the stdlib’s default cipher list. (Issue #588)







1.10.2 (2015-02-25)


	Fix file descriptor leakage on retries. (Issue #548)


	Removed RC4 from default cipher list. (Issue #551)


	Header performance improvements. (Issue #544)


	Fix PoolManager not obeying redirect retry settings. (Issue #553)







1.10.1 (2015-02-10)


	Pools can be used as context managers. (Issue #545)


	Don’t re-use connections which experienced an SSLError. (Issue #529)


	Don’t fail when gzip decoding an empty stream. (Issue #535)


	Add sha256 support for fingerprint verification. (Issue #540)


	Fixed handling of header values containing commas. (Issue #533)







1.10 (2014-12-14)


	Disabled SSLv3. (Issue #473)


	Add Url.url property to return the composed url string. (Issue #394)


	Fixed PyOpenSSL + gevent WantWriteError. (Issue #412)


	MaxRetryError.reason will always be an exception, not string.
(Issue #481)


	Fixed SSL-related timeouts not being detected as timeouts. (Issue #492)


	Py3: Use ssl.create_default_context() when available. (Issue #473)


	Emit InsecureRequestWarning for every insecure HTTPS request.
(Issue #496)


	Emit SecurityWarning when certificate has no subjectAltName.
(Issue #499)


	Close and discard sockets which experienced SSL-related errors.
(Issue #501)


	Handle body param in .request(...). (Issue #513)


	Respect timeout with HTTPS proxy. (Issue #505)


	PyOpenSSL: Handle ZeroReturnError exception. (Issue #520)







1.9.1 (2014-09-13)


	Apply socket arguments before binding. (Issue #427)


	More careful checks if fp-like object is closed. (Issue #435)


	Fixed packaging issues of some development-related files not
getting included. (Issue #440)


	Allow performing only fingerprint verification. (Issue #444)


	Emit SecurityWarning if system clock is waaay off. (Issue #445)


	Fixed PyOpenSSL compatibility with PyPy. (Issue #450)


	Fixed BrokenPipeError and ConnectionError handling in Py3.
(Issue #443)







1.9 (2014-07-04)


	Shuffled around development-related files. If you’re maintaining a distro
package of urllib3, you may need to tweak things. (Issue #415)


	Unverified HTTPS requests will trigger a warning on the first request. See
our new security documentation [https://urllib3.readthedocs.io/en/latest/security.html] for details.
(Issue #426)


	New retry logic and urllib3.util.retry.Retry configuration object.
(Issue #326)


	All raised exceptions should now wrapped in a
urllib3.exceptions.HTTPException-extending exception. (Issue #326)


	All errors during a retry-enabled request should be wrapped in
urllib3.exceptions.MaxRetryError, including timeout-related exceptions
which were previously exempt. Underlying error is accessible from the
.reason propery. (Issue #326)


	urllib3.exceptions.ConnectionError renamed to
urllib3.exceptions.ProtocolError. (Issue #326)


	Errors during response read (such as IncompleteRead) are now wrapped in
urllib3.exceptions.ProtocolError. (Issue #418)


	Requesting an empty host will raise urllib3.exceptions.LocationValueError.
(Issue #417)


	Catch read timeouts over SSL connections as
urllib3.exceptions.ReadTimeoutError. (Issue #419)


	Apply socket arguments before connecting. (Issue #427)







1.8.3 (2014-06-23)


	Fix TLS verification when using a proxy in Python 3.4.1. (Issue #385)


	Add disable_cache option to urllib3.util.make_headers. (Issue #393)


	Wrap socket.timeout exception with
urllib3.exceptions.ReadTimeoutError. (Issue #399)


	Fixed proxy-related bug where connections were being reused incorrectly.
(Issues #366, #369)


	Added socket_options keyword parameter which allows to define
setsockopt configuration of new sockets. (Issue #397)


	Removed HTTPConnection.tcp_nodelay in favor of
HTTPConnection.default_socket_options. (Issue #397)


	Fixed TypeError bug in Python 2.6.4. (Issue #411)







1.8.2 (2014-04-17)


	Fix urllib3.util not being included in the package.







1.8.1 (2014-04-17)


	Fix AppEngine bug of HTTPS requests going out as HTTP. (Issue #356)


	Don’t install dummyserver into site-packages as it’s only needed
for the test suite. (Issue #362)


	Added support for specifying source_address. (Issue #352)







1.8 (2014-03-04)


	Improved url parsing in urllib3.util.parse_url (properly parse ‘@’ in
username, and blank ports like ‘hostname:’).


	New urllib3.connection module which contains all the HTTPConnection
objects.


	Several urllib3.util.Timeout-related fixes. Also changed constructor
signature to a more sensible order. [Backwards incompatible]
(Issues #252, #262, #263)


	Use backports.ssl_match_hostname if it’s installed. (Issue #274)


	Added .tell() method to urllib3.response.HTTPResponse which
returns the number of bytes read so far. (Issue #277)


	Support for platforms without threading. (Issue #289)


	Expand default-port comparison in HTTPConnectionPool.is_same_host
to allow a pool with no specified port to be considered equal to to an
HTTP/HTTPS url with port 80/443 explicitly provided. (Issue #305)


	Improved default SSL/TLS settings to avoid vulnerabilities.
(Issue #309)


	Fixed urllib3.poolmanager.ProxyManager not retrying on connect errors.
(Issue #310)


	Disable Nagle’s Algorithm on the socket for non-proxies. A subset of requests
will send the entire HTTP request ~200 milliseconds faster; however, some of
the resulting TCP packets will be smaller. (Issue #254)


	Increased maximum number of SubjectAltNames in urllib3.contrib.pyopenssl
from the default 64 to 1024 in a single certificate. (Issue #318)


	Headers are now passed and stored as a custom
urllib3.collections_.HTTPHeaderDict object rather than a plain dict.
(Issue #329, #333)


	Headers no longer lose their case on Python 3. (Issue #236)


	urllib3.contrib.pyopenssl now uses the operating system’s default CA
certificates on inject. (Issue #332)


	Requests with retries=False will immediately raise any exceptions without
wrapping them in MaxRetryError. (Issue #348)


	Fixed open socket leak with SSL-related failures. (Issue #344, #348)







1.7.1 (2013-09-25)


	Added granular timeout support with new urllib3.util.Timeout class.
(Issue #231)


	Fixed Python 3.4 support. (Issue #238)







1.7 (2013-08-14)


	More exceptions are now pickle-able, with tests. (Issue #174)


	Fixed redirecting with relative URLs in Location header. (Issue #178)


	Support for relative urls in Location: ... header. (Issue #179)


	urllib3.response.HTTPResponse now inherits from io.IOBase for bonus
file-like functionality. (Issue #187)


	Passing assert_hostname=False when creating a HTTPSConnectionPool will
skip hostname verification for SSL connections. (Issue #194)


	New method urllib3.response.HTTPResponse.stream(...) which acts as a
generator wrapped around .read(...). (Issue #198)


	IPv6 url parsing enforces brackets around the hostname. (Issue #199)


	Fixed thread race condition in
urllib3.poolmanager.PoolManager.connection_from_host(...) (Issue #204)


	ProxyManager requests now include non-default port in Host: ...
header. (Issue #217)


	Added HTTPS proxy support in ProxyManager. (Issue #170 #139)


	New RequestField object can be passed to the fields=... param which
can specify headers. (Issue #220)


	Raise urllib3.exceptions.ProxyError when connecting to proxy fails.
(Issue #221)


	Use international headers when posting file names. (Issue #119)


	Improved IPv6 support. (Issue #203)







1.6 (2013-04-25)


	Contrib: Optional SNI support for Py2 using PyOpenSSL. (Issue #156)


	ProxyManager automatically adds Host: ... header if not given.


	Improved SSL-related code. cert_req now optionally takes a string like
“REQUIRED” or “NONE”. Same with ssl_version takes strings like “SSLv23”
The string values reflect the suffix of the respective constant variable.
(Issue #130)


	Vendored socksipy now based on Anorov’s fork which handles unexpectedly
closed proxy connections and larger read buffers. (Issue #135)


	Ensure the connection is closed if no data is received, fixes connection leak
on some platforms. (Issue #133)


	Added SNI support for SSL/TLS connections on Py32+. (Issue #89)


	Tests fixed to be compatible with Py26 again. (Issue #125)


	Added ability to choose SSL version by passing an ssl.PROTOCOL_* constant
to the ssl_version parameter of HTTPSConnectionPool. (Issue #109)


	Allow an explicit content type to be specified when encoding file fields.
(Issue #126)


	Exceptions are now pickleable, with tests. (Issue #101)


	Fixed default headers not getting passed in some cases. (Issue #99)


	Treat “content-encoding” header value as case-insensitive, per RFC 2616
Section 3.5. (Issue #110)


	“Connection Refused” SocketErrors will get retried rather than raised.
(Issue #92)


	Updated vendored six, no longer overrides the global six module
namespace. (Issue #113)


	urllib3.exceptions.MaxRetryError contains a reason property holding
the exception that prompted the final retry. If reason is None then it
was due to a redirect. (Issue #92, #114)


	Fixed PoolManager.urlopen() from not redirecting more than once.
(Issue #149)


	Don’t assume Content-Type: text/plain for multi-part encoding parameters
that are not files. (Issue #111)


	Pass strict param down to httplib.HTTPConnection. (Issue #122)


	Added mechanism to verify SSL certificates by fingerprint (md5, sha1) or
against an arbitrary hostname (when connecting by IP or for misconfigured
servers). (Issue #140)


	Streaming decompression support. (Issue #159)







1.5 (2012-08-02)


	Added urllib3.add_stderr_logger() for quickly enabling STDERR debug
logging in urllib3.


	Native full URL parsing (including auth, path, query, fragment) available in
urllib3.util.parse_url(url).


	Built-in redirect will switch method to ‘GET’ if status code is 303.
(Issue #11)


	urllib3.PoolManager strips the scheme and host before sending the request
uri. (Issue #8)


	New urllib3.exceptions.DecodeError exception for when automatic decoding,
based on the Content-Type header, fails.


	Fixed bug with pool depletion and leaking connections (Issue #76). Added
explicit connection closing on pool eviction. Added
urllib3.PoolManager.clear().


	99% -> 100% unit test coverage.







1.4 (2012-06-16)


	Minor AppEngine-related fixes.


	Switched from mimetools.choose_boundary to uuid.uuid4().


	Improved url parsing. (Issue #73)


	IPv6 url support. (Issue #72)







1.3 (2012-03-25)


	Removed pre-1.0 deprecated API.


	Refactored helpers into a urllib3.util submodule.


	Fixed multipart encoding to support list-of-tuples for keys with multiple
values. (Issue #48)


	Fixed multiple Set-Cookie headers in response not getting merged properly in
Python 3. (Issue #53)


	AppEngine support with Py27. (Issue #61)


	Minor encode_multipart_formdata fixes related to Python 3 strings vs
bytes.







1.2.2 (2012-02-06)


	Fixed packaging bug of not shipping test-requirements.txt. (Issue #47)







1.2.1 (2012-02-05)


	Fixed another bug related to when ssl module is not available. (Issue #41)


	Location parsing errors now raise urllib3.exceptions.LocationParseError
which inherits from ValueError.







1.2 (2012-01-29)


	Added Python 3 support (tested on 3.2.2)


	Dropped Python 2.5 support (tested on 2.6.7, 2.7.2)


	Use select.poll instead of select.select for platforms that support
it.


	Use Queue.LifoQueue instead of Queue.Queue for more aggressive
connection reusing. Configurable by overriding ConnectionPool.QueueCls.


	Fixed ImportError during install when ssl module is not available.
(Issue #41)


	Fixed PoolManager redirects between schemes (such as HTTP -> HTTPS) not
completing properly. (Issue #28, uncovered by Issue #10 in v1.1)


	Ported dummyserver to use tornado instead of webob +
eventlet. Removed extraneous unsupported dummyserver testing backends.
Added socket-level tests.


	More tests. Achievement Unlocked: 99% Coverage.







1.1 (2012-01-07)


	Refactored dummyserver to its own root namespace module (used for
testing).


	Added hostname verification for VerifiedHTTPSConnection by vendoring in
Py32’s ssl_match_hostname. (Issue #25)


	Fixed cross-host HTTP redirects when using PoolManager. (Issue #10)


	Fixed decode_content being ignored when set through urlopen. (Issue
#27)


	Fixed timeout-related bugs. (Issues #17, #23)







1.0.2 (2011-11-04)


	Fixed typo in VerifiedHTTPSConnection which would only present as a bug if
you’re using the object manually. (Thanks pyos)


	Made RecentlyUsedContainer (and consequently PoolManager) more thread-safe by
wrapping the access log in a mutex. (Thanks @christer)


	Made RecentlyUsedContainer more dict-like (corrected __delitem__ and
__getitem__ behaviour), with tests. Shouldn’t affect core urllib3 code.







1.0.1 (2011-10-10)


	Fixed a bug where the same connection would get returned into the pool twice,
causing extraneous “HttpConnectionPool is full” log warnings.







1.0 (2011-10-08)


	Added PoolManager with LRU expiration of connections (tested and
documented).


	Added ProxyManager (needs tests, docs, and confirmation that it works
with HTTPS proxies).


	Added optional partial-read support for responses when
preload_content=False. You can now make requests and just read the headers
without loading the content.


	Made response decoding optional (default on, same as before).


	Added optional explicit boundary string for encode_multipart_formdata.


	Convenience request methods are now inherited from RequestMethods. Old
helpers like get_url and post_url should be abandoned in favour of
the new request(method, url, ...).


	Refactored code to be even more decoupled, reusable, and extendable.


	License header added to .py files.


	Embiggened the documentation: Lots of Sphinx-friendly docstrings in the code
and docs in docs/ and on urllib3.readthedocs.org.


	Embettered all the things!


	Started writing this file.







0.4.1 (2011-07-17)


	Minor bug fixes, code cleanup.







0.4 (2011-03-01)


	Better unicode support.


	Added VerifiedHTTPSConnection.


	Added NTLMConnectionPool in contrib.


	Minor improvements.







0.3.1 (2010-07-13)


	Added assert_host_name optional parameter. Now compatible with proxies.







0.3 (2009-12-10)


	Added HTTPS support.


	Minor bug fixes.


	Refactored, broken backwards compatibility with 0.2.


	API to be treated as stable from this version forward.







0.2 (2008-11-17)


	Added unit tests.


	Bug fixes.







0.1 (2008-11-16)


	First release.










          

      

      

    

  

  
    
    Wheel
    

    

    

    

    
 
  

    
      
          
            
  
Wheel

A built-package format for Python.

A wheel is a ZIP-format archive with a specially formatted filename
and the .whl extension. It is designed to contain all the files for a
PEP 376 compatible install in a way that is very close to the on-disk
format. Many packages will be properly installed with only the “Unpack”
step (simply extracting the file onto sys.path), and the unpacked archive
preserves enough information to “Spread” (copy data and scripts to their
final locations) at any later time.

The wheel project provides a bdist_wheel command for setuptools
(requires setuptools >= 0.8.0). Wheel files can be installed with a
newer pip from https://github.com/pypa/pip or with wheel’s own command
line utility.

The wheel documentation is at http://wheel.rtfd.org/. The file format
is documented in PEP 427 (http://www.python.org/dev/peps/pep-0427/).

The reference implementation is at https://github.com/pypa/wheel


Why not egg?

Python’s egg format predates the packaging related standards we have
today, the most important being PEP 376 “Database of Installed Python
Distributions” which specifies the .dist-info directory (instead of
.egg-info) and PEP 426 “Metadata for Python Software Packages 2.0”
which specifies how to express dependencies (instead of requires.txt
in .egg-info).

Wheel implements these things. It also provides a richer file naming
convention that communicates the Python implementation and ABI as well
as simply the language version used in a particular package.

Unlike .egg, wheel will be a fully-documented standard at the binary
level that is truly easy to install even if you do not want to use the
reference implementation.




Code of Conduct

Everyone interacting in the wheel project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].






0.30.0


	Added py-limited-api {cp32|cp33|cp34|…} flag to produce cpNN.abi3.{arch}
tags on CPython 3.


	Documented the license_file metadata key


	Improved Python, abi tagging for wheel convert. Thanks Ales Erjavec.


	Fixed > being prepended to lines starting with “From” in the long description


	Added support for specifying a build number (as per PEP 427).
Thanks Ian Cordasco.


	Made the order of files in generated ZIP files deterministic.
Thanks Matthias Bach.


	Made the order of requirements in metadata deterministic. Thanks Chris Lamb.


	Fixed wheel install clobbering existing files


	Improved the error message when trying to verify an unsigned wheel file


	Removed support for Python 2.6, 3.2 and 3.3.







0.29.0


	Fix compression type of files in archive (Issue #155, Pull Request #62,
thanks Xavier Fernandez)







0.28.0


	Fix file modes in archive (Issue #154)







0.27.0


	Support forcing a platform tag using –plat-name on pure-Python wheels, as
well as nonstandard platform tags on non-pure wheels (Pull Request #60, Issue
#144, thanks Andrés Díaz)


	Add SOABI tags to platform-specific wheels built for Python 2.X (Pull Request
#55, Issue #63, Issue #101)


	Support reproducible wheel files, wheels that can be rebuilt and will hash to
the same values as previous builds (Pull Request #52, Issue #143, thanks
Barry Warsaw)


	Support for changes in keyring >= 8.0 (Pull Request #61, thanks Jason R.
Coombs)


	Use the file context manager when checking if dependency_links.txt is empty,
fixes problems building wheels under PyPy on Windows  (Issue #150, thanks
Cosimo Lupo)


	Don’t attempt to (recursively) create a build directory ending with ..
(invalid on all platforms, but code was only executed on Windows) (Issue #91)


	Added the PyPA Code of Conduct (Pull Request #56)







0.26.0


	Fix multiple entrypoint comparison failure on Python 3 (Issue #148)







0.25.0


	Add Python 3.5 to tox configuration


	Deterministic (sorted) metadata


	Fix tagging for Python 3.5 compatibility


	Support py2-none-‘arch’ and py3-none-‘arch’ tags


	Treat data-only wheels as pure


	Write to temporary file and rename when using wheel install –force







0.24.0


	The python tag used for pure-python packages is now .pyN (major version
only). This change actually occurred in 0.23.0 when the –python-tag
option was added, but was not explicitly mentioned in the changelog then.


	wininst2wheel and egg2wheel removed. Use “wheel convert [archive]”
instead.


	Wheel now supports setuptools style conditional requirements via the
extras_require={} syntax. Separate ‘extra’ names from conditions using
the : character. Wheel’s own setup.py does this. (The empty-string
extra is the same as install_requires.) These conditional requirements
should work the same whether the package is installed by wheel or
by setup.py.







0.23.0


	Compatibility tag flags added to the bdist_wheel command


	sdist should include files necessary for tests


	‘wheel convert’ can now also convert unpacked eggs to wheel


	Rename pydist.json to metadata.json to avoid stepping on the PEP


	The –skip-scripts option has been removed, and not generating scripts is now
the default. The option was a temporary approach until installers could
generate scripts themselves. That is now the case with pip 1.5 and later.
Note that using pip 1.4 to install a wheel without scripts will leave the
installation without entry-point wrappers. The “wheel install-scripts”
command can be used to generate the scripts in such cases.


	Thank you contributors







0.22.0


	Include entry_points.txt, scripts a.k.a. commands, in experimental
pydist.json


	Improved test_requires parsing


	Python 2.6 fixes, “wheel version” command courtesy pombredanne







0.21.0


	Pregenerated scripts are the default again.


	“setup.py bdist_wheel –skip-scripts” turns them off.


	setuptools is no longer a listed requirement for the ‘wheel’
package. It is of course still required in order for bdist_wheel
to work.


	“python -m wheel” avoids importing pkg_resources until it’s necessary.







0.20.0


	No longer include console_scripts in wheels. Ordinary scripts (shell files,
standalone Python files) are included as usual.


	Include new command “python -m wheel install-scripts [distribution
[distribution …]]” to install the console_scripts (setuptools-style
scripts using pkg_resources) for a distribution.







0.19.0


	pymeta.json becomes pydist.json







0.18.0


	Python 3 Unicode improvements







0.17.0


	Support latest PEP-426 “pymeta.json” (json-format metadata)







0.16.0


	Python 2.6 compatibility bugfix (thanks John McFarlane)


	Non-prerelease version number







1.0.0a2


	Bugfix for C-extension tags for CPython 3.3 (using SOABI)







1.0.0a1


	Bugfix for bdist_wininst converter “wheel convert”


	Bugfix for dists where “is pure” is None instead of True or False







1.0.0a0


	Update for version 1.0 of Wheel (PEP accepted).


	Python 3 fix for moving Unicode Description to metadata body


	Include rudimentary API documentation in Sphinx (thanks Kevin Horn)







0.15.0


	Various improvements







0.14.0


	Changed the signature format to better comply with the current JWS spec.
Breaks all existing signatures.


	Include wheel unsign command to remove RECORD.jws from an archive.


	Put the description in the newly allowed payload section of PKG-INFO
(METADATA) files.







0.13.0


	Use distutils instead of sysconfig to get installation paths; can install
headers.


	Improve WheelFile() sort.


	Allow bootstrap installs without any pkg_resources.







0.12.0


	Unit test for wheel.tool.install







0.11.0


	API cleanup







0.10.3


	Scripts fixer fix







0.10.2


	Fix keygen







0.10.1


	Preserve attributes on install.







0.10.0


	Include a copy of pkg_resources. Wheel can now install into a virtualenv
that does not have distribute (though most packages still require
pkg_resources to actually work; wheel install distribute)


	Define a new setup.cfg section [wheel]. universal=1 will
apply the py2.py3-none-any tag for pure python wheels.







0.9.7


	Only import dirspec when needed. dirspec is only needed to find the
configuration for keygen/signing operations.







0.9.6


	requires-dist from setup.cfg overwrites any requirements from setup.py
Care must be taken that the requirements are the same in both cases,
or just always install from wheel.


	drop dirspec requirement on win32


	improved command line utility, adds ‘wheel convert [egg or wininst]’ to
convert legacy binary formats to wheel







0.9.5


	Wheel’s own wheel file can be executed by Python, and can install itself:
python wheel-0.9.5-py27-none-any/wheel install ...


	Use argparse; basic wheel install command should run with only stdlib
dependencies.


	Allow requires_dist in setup.cfg’s [metadata] section. In addition to
dependencies in setup.py, but will only be interpreted when installing
from wheel, not from sdist. Can be qualified with environment markers.







0.9.4


	Fix wheel.signatures in sdist







0.9.3


	Integrated digital signatures support without C extensions.


	Integrated “wheel install” command (single package, no dependency
resolution) including compatibility check.


	Support Python 3.3


	Use Metadata 1.3 (PEP 426)







0.9.2


	Automatic signing if WHEEL_TOOL points to the wheel binary


	Even more Python 3 fixes







0.9.1


	‘wheel sign’ uses the keys generated by ‘wheel keygen’ (instead of generating
a new key at random each time)


	Python 2/3 encoding/decoding fixes


	Run tests on Python 2.6 (without signature verification)







0.9


	Updated digital signatures scheme


	Python 3 support for digital signatures


	Always verify RECORD hashes on extract


	“wheel” command line tool to sign, verify, unpack wheel files







0.8


	none/any draft pep tags update


	improved wininst2wheel script


	doc changes and other improvements







0.7


	sort .dist-info at end of wheel archive


	Windows & Python 3 fixes from Paul Moore


	pep8


	scripts to convert wininst & egg to wheel







0.6


	require distribute >= 0.6.28


	stop using verlib







0.5


	working pretty well







0.4.2


	hyphenated name fix







0.4


	improve test coverage


	improve Windows compatibility


	include tox.ini courtesy of Marc Abramowitz


	draft hmac sha-256 signing function







0.3


	prototype egg2wheel conversion script







0.2


	Python 3 compatibility







0.1


	Initial version








          

      

      

    

  

  
    
    Docker hands-on exercises
    

    

    

    

    
 
  

    
      
          
            
  
Docker hands-on exercises


Use case 1: Deploy a custom Docker image


	Download the sample code from https://github.com/Azure-Samples/docker-django-webapp-linux.git


	Build the image using the Dockerfile in that repo using docker build command


	Run an instance from that image


	Verify the web app and container are functioning correctly







Use case 2: Simple Bioinformatics example

Let’s say if you find a cool tool/software and want to run it on your computer and as we found out in the morning session, it’s not always easy to install the tool onto your computer or on a server natively. Since this workshop is about containers, let’s containerize this tool.

For this simple hands-on exercise, let’s containerize fastqe tool - https://github.com/lonsbio/fastqe. For those of you who are not from Bioinformatics, this tool generates read one or more FASTQ files, then it will compute quality stats for each file and print those stats as emoji… for some reason.

[image: fastqe]

Given a fastq file in Illumina 1.8+/Sanger format, calculate the mean (rounded) score for each position and print a corresponding emoji!


Tip

Natively you would install this tool like pip install fastqe. Now think of how you can dockerize this with appropriate base image and dependencies



After dockerizing the tool, for this exercise we don’t have to bind mount the volume but just print the fastqe help and make sure that it is actually working.


Tip

Natively you would print the help of the tool as fastqe -h






1. Data Management Hands-on

Form the “Introduction to Docker” session this morning, we learned that a running Docker container is an isolated environment created from a Docker image.  This means, although it is possible to store data within the “writable layer” of a container, there are some limitations:


	The data doesn’t persist when that container is no longer running, and it can be difficult to get the data out of the container if another process needs it.


	A container’s writable layer is tightly coupled to the host machine where the container is running. You can’t easily move the data somewhere else.




Docker offers three different ways to mount data into a container from the Docker host: volumes, bind mounts, or tmpfs volumes.  For simplicity, we will only use bind mounts in our hands-on session, even though volumes is the more powerful and usable option for most use cases.


1.1 Bind mounts

Bind mounts: When you use a bind mount, a file or directory on the host machine is mounted into a container.

[image: ../_images/bind_mount.png]

Warning

A side effect of using bind mounts, for better or for worse, is that you can change the host filesystem via processes running in a container, including creating, modifying, or deleting important system files or directories.  This is a powerful ability which can have security implications, including impacting non-Docker processes on the host system.

If you use --mount to bind-mount a file or directory that does not yet exist on the Docker host, Docker does not automatically create it for you, but generates an error.



Let’s clone a git repository to obtain our data sets:

$ git clone https://github.com/CyVerse-learning-materials/ccw-2019-astro.git





We can cd into the HOPS work directory, and mount it to /root as we launch the eventhorizontelescope/hops container:

$ cd ccw-2019-astro/hops
$ ls
1234
$ docker run -it --rm --name hops -v $PWD:/root eventhorizontelescope/hops
Setup HOPS v3.19 with HOPS_ROOT=/root for x86_64-3.19





You will start at the /root work directory and the host data 1234 is available in it:

$ pwd
/root
$ ls
1234





You can open another terminal and use docker inspect hops | grep -A9 Mounts to verify that the bind mount was created correctly.  Looking for the “Mounts” section,

$ docker inspect hops | grep -A9 Mounts
"Mounts": [
    {
        "Type": "bind",
        "Source": "/Users/ckchan/ccw-2019-astro/hops",
        "Destination": "/root",
        "Mode": "",
        "RW": true,
        "Propagation": "rprivate"
    }
],





This shows that the mount is a bind mount with correct source and target.  It also shows that the mount is read-write, and that the propagation is set to rprivate.




Use case 1: Processing VLBI data with HOPS in Docker

HOPS stands for the Haystack Observatory Postprocessing System.  It is a standard data analysis tool in Very-long-baseline interferometry (VLBI).  HOPS has a long history and it depends on legacy libraries.  This makes it difficult to compile on modern Unix/Linux systems.  Nevertheless, with Docker, you have already launched a HOPS envirnment that you can analysis VLBI data!

The most basic step in analysis VLBI is called “fringe fitting”, which we will perform in the running HOPS container by

$ ls 1234/No0055/
3C279.zxxerd  L..zxxerd  LL..zxxerd  LW..zxxerd  W..zxxerd  WW..zxxerd
$ fourfit 1234
fourfit: Warning: No valid data for this pass for pol 2
fourfit: Warning: No valid data for this pass for pol 3
$ ls 1234/No0055/
3C279.zxxerd  LL..zxxerd     LL.B.2.zxxerd  LW.B.3.zxxerd  W..zxxerd   WW.B.5.zxxerd
L..zxxerd     LL.B.1.zxxerd  LW..zxxerd     LW.B.4.zxxerd  WW..zxxerd





fourfit reads in the correlated data and create the so called “fringe files”.  The warnings are normal because there are missing polarizations in the data.  In order to see the result of the fringe fitting, you can use fplot:

$ fplot -d %04d.ps 1234
$ ls
0000.ps  0001.ps  0002.ps  0003.ps  0004.ps  1234





Congratulations!  You just created 4 fringe plots that show all important information of the VLBI experiment!  Now you can exit your HOPS container and open them on your host machine.






2. Jupyter Notebook Hands-on

Mounting a host directory is one way to make a container connect with the outside work.  Another possible is through network by exposing a port.


Use case 2: Processing Galaxy Simulation with Jupyter in Docker

In this second hands-on, we will use Docker to run a “ready to go” Jupyter notebook in a container.  We will expose the port 8888 from the container to the localhost so that you can connect to the notebook.

Inside the ccw-2019-astro git repository that you downloaded earlier, there is a sample Galaxy simulation:

    $ pwd
    /Users/ckchan/ccw-2019-astro/hops
    $ cd ../galaxy/
    $ pwd
    /Users/ckchan/ccw-2019-astro/galaxy

    # Specify the uid of the jovyan user.  Useful to mount host volumes with specific file ownership.  For this option to take effect, you must run the container with --user root

    $ docker run -it --rm -v $PWD:/home/jovyan/work -p 8888:8888 -e NB_UID=$(id -u) --user root astrocontainers/jupyter
    Set username to: jovyan
    usermod: no changes
    Set jovyan UID to: 1329
    Executing the command: jupyter notebook
    [I 23:36:09.446 NotebookApp] Writing notebook server cookie secret to /home/jovyan/.local/share/jupyter/runtime/notebook_cookie_secret
    [W 23:36:09.686 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
    [I 23:36:09.722 NotebookApp] JupyterLab beta preview extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
    [I 23:36:09.722 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
    [I 23:36:09.730 NotebookApp] Serving notebooks from local directory: /home/jovyan
    [I 23:36:09.730 NotebookApp] 0 active kernels
    [I 23:36:09.730 NotebookApp] The Jupyter Notebook is running at:
    [I 23:36:09.730 NotebookApp] http://[all ip addresses on your system]:8888/?token=a81dbeec92b286df393bb484fdf53efffab410fd64ec8702
    [I 23:36:09.730 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    [C 23:36:09.731 NotebookApp]
    Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
    http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478





The last line is a URL that we need to copy and paste into our browser to access our new Jupyter Notebook:

http://localhost:8888/?token=dfb50de6c1da091fd62336ac52cdb88de5fe339eb0faf478






Warning

Do not copy and paste the above URL in your browser as this URL is specific to my environment.



[image: ../_images/jn_login1.png]
You should be greeted by your own containerised Jupyter service!  Now open galaxy/InClassLab7_Template_wSolutions.ipynb and try analysis a Galaxy simulation!

[image: ../_images/jn_galaxy.png]
To shut down the container, simply hit Ctrl-C in the terminal/command prompt twice.  Your work will all be saved on your actual machine in the path we set in our Docker compose file.  And there you have it—a quick and easy way to start using Jupyter notebooks with the magic of Docker.









          

      

      

    

  
_images/jupyter1-5.png
£ Discovery Environment X C JupyterLab X +

“ > C Y @& https://a7a7b014c.cyverse.run/lab? hx¢ 9 - P9 v | & :

: File Edit View Run Kernel Tabs Settings Help

K + 1+ ¢} E3 Launcher
=
1
> Name - Last Modified
s | M logs 2 minutes ago Notebook
5
x
. (U
8 o0
£
g Julia 0.6.2
(@]
3
Qa
©

Julia 0.6.2

B B

Terminal






_images/jupyter1-6.png
£ Discovery Environment X C JupyterLab X +

“ > C Y @& https://a7a7b014c.cyverse.run/lab? hxg 9 - P9 v | & :

: File Edit View Run Kernel Tabs Settings Help

@ + 1+ c [® plotting.ipynb

i “ B + X O » m C Code
Name - Last Modified )

= - In [2]: dmport numpy as np

E B3 logs 8 minutes ago dimport matplotlib.pyplot as plt

=8 [ plotting.ipynb a minute ago %matplotlib inline
my_figure.pn a minute ago
= my-tigure.png < x = np.linspace(6, 10, 100)

B

j=

2 fig = plt.figure()

E plt.plot(x, np.sin(x), '_")

o plt.plot(x, np.cos(x), "--");

B 100

o

e

©

o

o

Q

K

fig.savefig('my_figure.png')






_images/jupyter1-3.png
£~ Discovery Environment X +

& > C (Y @& https://de.cyverse.org/de/

@ CyVerse Discovery Environment

€< Apps

Apps ~

Workflow v Share + ' Refresh  jupyter-lab

Categories |«| Search results: 2 found for jupyter-lab

l % jupyter-lab2

‘ My Apps H Topic “ Operation “ HPC } Filter: |All v

E Apps under development Name Integrated by
[5J Favorite Apps & iupyter-lab

[5 My public apps

[J Shared with me

€&~ jupyter-lab2

Name

Select multiple input files. Tip: You can also drag and drop files from the Data window.

* Manage Tools

g Add X Delete

e

1", Switch View

0ee

Launch Analysis |






_images/jupyter1-4.png
£~ Discovery Environment X +

<« - C 0 @& https://de.cyverse.org/de/ Phe ® = P 9 Ao @ :

@ CyVerse Discovery Environment

jupyter-lab2_analysis1 running. Access your running analysis here.

jupyter-lab2_analysis1 submitted

Hisat2-Cuffcompare_v1.0_analysis1 completed

sateeshp has shared the following analysis with you: RMTA_v1.6_analysis1_pe

Hisat2-Cuffcompare_v1.0_analysis1 running

Analyses

Hisat2-Cuffcompare_v1.0_analysis1 submitted

sateeshp has shared the following analysis with you: Hisat2-Cuffcompare_v1.0.

rstudio-3.5.0_analysis1 canceled

shiny-0.10.2.2_analysis1 canceled

shiny-0.10.2.2_analysis1 running. Access your running_analysis here.

See all notifications






_images/jupyter1-7.png
£~ Discovery Environment X +

< C (@ @& https://de.cyverse.org/de/

@ CyVerse Discovery Environment

€= Analyses 0800
Analyses + " Refresh All v "‘ | | Search by Name or App

|| Name Owner App Start Date End Date Status

[7 jupyter-lab2_analysis1  upendra_35@iplant... jupyter-lab2 2018 Sep 19 14:51:... Running 5
[”] RMTA_v1.6_analysisi_peri sateeshp@iplantcoll... RMTA v1.6 2018 Sep 19 11:39:... Running §
\:\ Hisat2-Cuffcompare_v1.... upendra_35@iplant... Hisat2-Cuffcom... 2018 Sep 19 11:31:... 2018 Sep 19 12:04:... Completed §
[} Hisat2-Cuffcompare_v1.... sateeshp@iplantcoll... Hisat2-Cuffcom... 2018 Sep 19 11:08:... 2018 Sep 19 11:21:... Failed §
7] jupyter-lab_analysis1 upendra_35@iplant... jupyter-lab 2018 Sep 18 17:06:... 2018 Sep 19 14:59:... Canceled §
[ DESeq2__multifactorial_... andersonsi@iplantc... DESeq2 (multif... 2018 Sep 13 10:16:... 2018 Sep 13 10:23:... Failed §
(| edgeR__multifactorial andersonsi@iplantc... edgeR (multifa... 2018 Sep 13 10:04:... 2018 Sep 13 10:07:... Failed §
[] HTSeg-Ss_roots andersonsi@iplantc... HTSeq-count-0... 2018 Sep 12 14:38:... 2018 Sep 12 14:50:... Completed §
[7] MetaPhyler-SR_0.115_an... upendra_35@iplant... MetaPhyler-SR ... 2018 Sep 12 13:50:... 2018 Sep 12 13:52:... Completed §
"] Evolinc-1I_E1 yazhou_jic@iplantc... Evolinc-II v1.0 2018 Sep 12 07:05:... 2018 Sep 17 08:24:... Completed §
[ Hisat2-Sp_Leaves andersonsi@iplantc... Hisat2-Cuffcom... 2018 Sep 11 12:57:... 2018 Sep 11 13:31:... Completed §
[ DESeq2__multifactorial_... upendra_35@iplant... DESeq2 (multif... 2018 Sep 11 11:34:... 2018 Sep 11 11:41:... Completed §
7] cpath-0.1_analysis1 upendra_35@iplant... cpath-0.1 2018 Sep 7 14:48:48 2018 Sep 7 14:55:46 Completed §
7] cpath-0.1_analysis1 upendra_35@iplant... cpath-0.1 2018 Sep 7 10:41:29 2018 Sep 7 10:43:38 Completed §
\:\ rstudio-3.5.0_analysis1 upendra_35@iplant... rstudio-3.5.0 2018 Aug 29 09:11:... 2018 Sep 7 14:53:41 Canceled §
[ Compress_files_with_gzi... upendra_35@iplant... Compress files ... 2018 Aug 27 16:55:... 2018 Aug 27 22:41:... Completed §
[] popte2-1.10.04_analysis1  upendra_35@iplant... popte2-1.10.04 2018 Aug 17 15:57:... 2018 Aug 17 16:04:... Completed §
["] osg-gene-length-1.0_an... upendra_35@iplant... o0sg-gene-lengt... 2018 Aug 16 15:02:... 2018 Aug 16 15:25:... Completed §
["] osg-gene-length-1.0_an... upendra_35@iplant... o0sg-gene-lengt... 2018 Aug 16 15:02:... 2018 Aug 16 15:24:... Completed §
["] % osg-gene-length-1.0_... upendra_35@iplant... o0sg-gene-lengt... 2018 Aug 16 15:02:... 2018 Aug 16 15:25:... Completed :

Displaying 1 - 20 of 1,412 1 item(s)






_images/jupyter1-8.png
£~ Discovery Environment X +

< C (@ @& https://de.cyverse.org/de/

@ CyVerse Discovery Environment

€= Analyses (=X Yo ) x)
Analyses + " Refresh All v v | | |Search by Name or App
] Go to output folder r App Start Date End Date Status

jupyter-lab2 2018 Sep 19 14:51

4 View Parameters Running

» Relaunch... hp@iplantcoll... RMTA v1.6 2018 Sep 19 11:39:... Running

4 View Analysis Info ra_35@iplant... Hisat2-Cuffcom... 2018 Sep 19 11:31:... 2018 Sep 19 12:04:... Completed
£ Share with collaborators...

hp@iplantcoll... Hisat2-Cuffcom... 2018 Sep 19 11:08:... 2018 Sep 19 11:21:... Failed

[ _Complete and Save Outputs

| ra_35@iplant... jupyter-lab 2018 Sep 18 17:06:... 2018 Sep 19 14:59:... Canceled §
SIS sonsi@iplantc... DESeq2 (multif... 2018 Sep 13 10:16:... 2018 Sep 13 10:23:... Failed E
.U Rename... sonsi@iplantc... edgeR (multifa... 2018 Sep 13 10:04:... 2018 Sep 13 10:07:... Failed §
P Update Comments... sonsi@iplantc... HTSeq-count-0... 2018 Sep 12 14:38:... 2018 Sep 12 14:50:... Completed §
MetaPhyler-SR_0.115_an... upendra_35@iplant... MetaPhyler-SR ... 2018 Sep 12 13:50:... 2018 Sep 12 13:52:... Completed §

"] Evolinc-1I_E1 yazhou_jic@iplantc... Evolinc-II v1.0 2018 Sep 12 07:05:... 2018 Sep 17 08:24:... Completed §
[ Hisat2-Sp_Leaves andersonsi@iplantc... Hisat2-Cuffcom... 2018 Sep 11 12:57:... 2018 Sep 11 13:31:... Completed §
[ DESeq2__multifactorial_... upendra_35@iplant... DESeq2 (multif... 2018 Sep 11 11:34:... 2018 Sep 11 11:41:... Completed §
7] cpath-0.1_analysis1 upendra_35@iplant... cpath-0.1 2018 Sep 7 14:48:48 2018 Sep 7 14:55:46 Completed §
7] cpath-0.1_analysis1 upendra_35@iplant... cpath-0.1 2018 Sep 7 10:41:29 2018 Sep 7 10:43:38 Completed §
\:\ rstudio-3.5.0_analysis1 upendra_35@iplant... rstudio-3.5.0 2018 Aug 29 09:11:... 2018 Sep 7 14:53:41 Canceled §
[ Compress_files_with_gzi... upendra_35@iplant... Compress files ... 2018 Aug 27 16:55:... 2018 Aug 27 22:41:... Completed §
[] popte2-1.10.04_analysis1  upendra_35@iplant... popte2-1.10.04 2018 Aug 17 15:57:... 2018 Aug 17 16:04:... Completed §
["] osg-gene-length-1.0_an... upendra_35@iplant... o0sg-gene-lengt... 2018 Aug 16 15:02:... 2018 Aug 16 15:25:... Completed §
["] osg-gene-length-1.0_an... upendra_35@iplant... o0sg-gene-lengt... 2018 Aug 16 15:02:... 2018 Aug 16 15:24:... Completed §
["] % osg-gene-length-1.0_... upendra_35@iplant... o0sg-gene-lengt... 2018 Aug 16 15:02:... 2018 Aug 16 15:25:... Completed §

Displaying 1 - 20 of 1,412 1 item(s)






_static/minus.png





_static/file.png





_static/plus.png





_static/up.png





_static/up-pressed.png





_static/down.png





_static/down-pressed.png





_images/jupyter1-1.png
£~ Discovery Environment X +

<« - C 0 @& https://de.cyverse.org/de/ % B @ P 9 & @ :

@ CyVerse Discovery Environment

& Apps e JoXx)
Apps ~ Workflow » Share ~ (. Refresh | jupyter-lab & Manage Tools | Switch View

Categories |«| Search results: 2 found for jupyter-lab

[ My Apps H Topic “ Operation “ HPC ] Filter: | All W

E Apps under development Name Integrated by
[5J Favorite Apps & jupyter-lab Ipc Test
[5 My public apps

& jupyter-lab2 Upendra Kumar...
[J Shared with me






_images/jupyter1-2.png
£~ Discovery Environment X +

< C (@ @& https://de.cyverse.org/de/

@ CyVerse Discovery Environment

€< Apps

Apps ~

0000
Workflow v Share + ' Refresh  jupyter-lab & Manage Tools | Switch View

Categories |«| Search results: 2 found for jupyter-lab

‘ My Apps H Topic H Operation H HPC ‘ Filter: |All v

E Apps under development Name Integrated by
[5J Favorite Apps & iupyter-lab Ipc Test

[5 My public apps
[J Shared with me

Upendra Kumar...

€&~ jupyter-lab2

Analysis Name:jupyter-lab2_analysis1
Analysis Name:

jupyter-lab2_analysis1

Comments:

Select output folder:

/iplant/home/upendra_35/analyses

[ Retain Inputs? Enabling this flag will copy all the input files into the analysis result folder.
Parameters

Launch Analysis

jupyter-lab2






_images/jn_login3.5.png
&

c

-~
__ Home

7 @ localhost:8888/tree#

Z Jupyter

Files

Running Clusters

Select items to perform actions on them.

v B
0 work

& demo_notebook.ipynb

upendra kumar

O

- PORe«O

Logout

Upload ' New~ &

Name 4 Last Modified 4
5 months ago
Running seconds ago

seconds ago






_images/jn_login3.png
~_~ /o~
__ Home X / _ demo_notebook X upendra kumar

C 1Y  ® localhost:8888/notebooks/demo_notebook.ipynb * O [ ] 2 B e O
: JUpyter demo_notebook Last Checkpoint: 2 minutes ago (autosaved) @ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted |Python3 (@)
+ x @B~ ¥ M B C Code RN=

In [1]: x = "Hello world!"

In [2]: x

Out[2]: 'Hello world!'

In [3]: f = open("out.txt", 'w')

In [4]: f.write(x)

Out[4]: 12






_static/asc.gif





_static/comment-bright.png





_static/bg.gif





_static/comment.png





_static/comment-close.png





_static/desc.gif





_static/ajax-loader.gif





_images/cyverse_cmyk2.png
CYVERSE

LEARNIN G INSTITUTE





_images/cyverse_cmyk3.png
CYVERSE

LEARNIN G INSTITUTE





_images/cyverse_cmyk.png
CYVERSE

LEARNIN G INSTITUTE





_images/cyverse_cmyk1.png
CYVERSE

LEARNIN G INSTITUTE





_images/cyverse_learning2.png
& CYVERSE

LEARNING





_images/cyverse_rgb.png
& CYVERSE





_images/cyverse_learning.png
& CYVERSE

LEARNING





_images/cyverse_learning1.png
& CYVERSE

LEARNING





_images/dc-1.png
[ localhost:8888 X upendra kumar
¢« C v @ localhost:8888 ¢ | () 9 2 B e O

This Compose/Flask demo has been viewed 8 time(s).






_images/pwd.png
&

[ Play with Docker X upendra kumar

CcC 0 \ @ Secure | https://labs.play-with-docker.com i‘z\ O 9 Q] B e O

Contribute

Play with Docker

A simple, interactive and fun playground to learn Docker






_images/dff16156a2fac35ba7650c7bae20c561e0b8d2e8.png
CONTAINER 1 CONTAINER N

Applications -
CUDA Toolkit

Container 0S User Space -

Docker Engine -

CUDA Driver -
Host 0S -

NVIDIA GPUs -
Server -






_images/reproducibility-spectrum.png
Reproducibility Spectrum
Publication +

Publication

i Code

A =
Not reproducible < g Gold standard
N\






_images/private_registry.png
@& Search - Docker Hub X upendra kumar
&< C (0 | @& Secure | https://hub.docker.com/search/?isAutomated=0&isOfficial=0&pag... Yt % [ ) Q) B e O

Docker Store is the new place to discover public Docker content. Check it out —

%‘ Q registry Dashboard Explore Organizations Create . upendradevisetty

Repositories (3031)

All <

-t registry 1.9K 10M+ )
official STARS PULLS DETAILS






_images/portainer_demo.png
. Portainer X

upendra kumar

C Y @ localhost:9000/#/dashboard

Eporfoiner.io Home
Dashboard
Name

Dashboard

App Templates Docker version
Containers = CPU

Images Memory

Networks

Volumes

e 4 % 3 running

Engine 2 1 stopped
Containers

User management

Endpoints

Registries .I.I

Settings Volumes

riqinarin 1158

moby

17.09.0-ce

21GCB

54

Images

9

Networks

Q] B« O
@ admin

#_my account ®_log out

¢ 315GB






_images/atmo-1.1.png
& CYVERSE

Authentication Service

o

Links to CyVerse Resources

Username: N . )
B Additional Information

upendra_35

2 Service Status

Password:

™ Learning Center

@ Forgot your password?
@ Register
@ Contact support

© About CyVerse

For security reasons, please log out and exit your web
browser when you are done accessing services that require
authentication!






_images/atmo-6.png
cC O & https://atmo.cyverse.org/application/projects/7950/resources e % O o = P

@ CYVERSE ot Dashboard '™ Projects M Images @ Help

£32 RESOURCES DETAILS & o

CC2019

NEW

Q
©

= Instances

Name Status Activity IP Address Size Provider

r:‘ workshop tutorial @ Active N/A 128.196.142.112 Small1 CyVerse Cloud - Marana





_images/dockerhub_autobuilds.png
s Organizations Get Help tswetnam

Repositories  tswetnam / emsi-rstudio ~ Builds ~ Edit Using 1 of 1 private repositories. Get more

General Tags Builds Timeline  Collaborators ~Webhooks  Settings

Build configurations

SOURCE REPOSITORY O tyson-swetnam x~  emsi x v

NOTE: Changing source repository may affect existing build rules.

BUILD LOCATION Build on Docker Hub's infrastructure

AUTOTEST O off
QO Internal Pull Requests

@ Internal and External Pull Requests

REPOSITORY LINKS O off

@ Enable for Base Image ()

BUILD RULES +

The build rules below specify how to build your source into Docker images.

Source Type Source Docker Tag Dockerfile  Build @ Autobuild Build
location Context Caching
Branch  ~  aster 352 Dockerfile ~ /docker/rstud =) @ ]

» View example build rules

BUILD ENVIRONMENT VARIABLES +

Delete Cancel m Save and Build

Build triggers

Trigger your Automated Build by sending a POST to a specific endpoint.

Trigger name +

Name Trigger Url





_images/dockerhub_buildsettings.png
Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository. Learn More.

O v

Connected Disconnected

O tyson-swetnam X v cc-camp X v

v Click here to customize the build settings

BUILD RULES +

The build rules below specify how to build your source into Docker images.

Source Type Source Docker Tag Dockerfile Build
location Caching
Branch ~  master latest Dockerfile @ []

» View example build rules






_images/docker_image.png
0 1 >

STARS PULLS pERts






_images/dockerhub_autobuild.png
Explore  Repositories  Organizations GetHelp ~ tswetnam ¥ ‘

Repositories tswetnam / emsi-rstudio Builds Using 1 of 1 private repositories. Get more

General Tags Builds Timeline Collaborators Webhooks Settings

Configure Automated Builds

Build Activity
Overview of your build activity of the last 19 builds Queue W Success mFailed mm Canceled
270 min

180 min

90 min

-1 L]
Automated Builds
Autobuild triggers a new build with every git push to your source code repository. Learn More.
O tyson-swetnam/emsi | Use Docker Hub's infrastructure | Autotests: Internal and External Pull Requests
Docker Tag Source Build Status Autobuild Build caching

3.5.2 master SUCCESS v v Trigger P






_images/f1000.png
FIOOOResearch

F1000Research 2016, 5:1442 Last updated: 05 DEC 2016

@ CrossMark
& click for updates
SOFTWARE TOOL ARTICLE

Bringing your tools to CyVerse Discovery Environment
using Docker [version 3; referees: 3 approved]

Upendra Kumar Devisetty, Kathleen Kennedy, Paul Sarando, Nirav Merchant,
Eric Lyons

CyVerse, University of Arizona, Tucson, AZ, 85721, USA





_images/fastqe.png
In [2]: mean_emoji("ERR048396_1.fastqg")

RREORCOADALSNO000000000N000000VRNOVCOVVVRDO®
V0000 000000000RCRARRRARAAARCOOOOOER

In [3]: mean _emoji("ERR048396_2.fastq")

0000000000000 0000000RR0R0RR0R 08
fSALAALAARSSLAASARAARBRARRDYYbbBA





_images/dockerhub_create.png
. Organizations
tswetnam v QU Search by repository name... g





_images/dockerhub_createrepo.png
U‘docker Explore  Repositories  Organizations GetHelp ~ tswetnam ’

Repositories Create Using 1 of 1 private repositories. Get more

Create Repository Pro tip

You may push a new image to this repository using the CLI:

tswetnam ¥ | Name
docker tag local-image:tagname new-repo:tagname
docker push new-repo:tagname
Description
Make sure to change tagname with your desired image repository
tag.
Visibility

Using 1 of 1 private repositories. Get more

@ Public ® Private &
Public repositories appear in Docker Only you can view private repositories
Hub search results

Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository. Learn More.

O v

Connected Disconnected





_images/homeicon.png





_images/jupyter1-9.png
[ Sugar and VICE are very nice X +

~ = C 0O & https://loading.cyverse.run/?url=https%3A%2F%2Facea58587.cyverse.run w O QO = P Y G @ O’

Welcome!

Please wait while we launch your application.






_images/docker.png





_images/homeicon5.png





_images/hubfind1.png
Explore  hello-world

>hE"l:l hello-world v

'I Docker Official Images
Wor Hello World! (an example of minimal Dockerization) Windows - xB6-64 ( latest ) -

Copy and paste to pull this image

& 1B+
docker pull hello-world ]
Container  Windows  Linux  IBMZ  ARMG64  PowerPC64LE  x86-64 ARM 386  Official Image
View Tags
Description Reviews Tags

Supported tags and respective Dockerfile links

(See "What's the difference between 'Shared' and 'Simple’ tags?" in the FAQ.)






_images/homeicon3.png





_images/homeicon4.png





_images/img_building_1.png
Add Tool

Tool Information

* Tool Name: tensorflow_image_classifier

Description: Tensorflow Image Classifier

* Version : 1.0

* Image name: upendradevisetty/tensorflow_image_classifier
Tag: 1.0

Docker Hub URL:

* Type: executable i

* 0OSG Image
Path:

Entrypoint:

Working Directory:

UID:
Max CPU Cores: v
Memory Limit: 0GB i

OK Cancel





_images/img_building_3.png
/ €& Discovery Environment X\ upendra kumar

& cC 0O ‘ @ Secure | https://de.cyverse.org/de/ ﬂr‘ (0 [ ) B OB e

@ CyVerse Discovery &= Tensorflow image classifier - 1.0
Save 4 Preview » -] Command Line Order

‘_‘Apps 00000

| « Tensorflow image classifier - 1.0 B ils: .
App Items i« atensorfio ge e * Details & Manage Tools | Switch View

Apps ~  Workflow » Share» ' R ) - :
Tool used: ) [Select an item from the center panel to edit its properties.

Categories Section tensorflow_image_classifier 1.0 | 4 |

| My Apps || Topic || Operation || Section * App name:

[5J Apps under development
[J Favorite Apps

[5 My public apps Files/Folders
[ Shared with me

Tensorflow image classifier - 1.0 0)
* App description:
Tensorflow image classifier Python_app_Test
Multiple Input Files
Upendra Kumar Devisetty
* Image pics - O] a
* Input File:

| b= | Select a file Tensorflow image classifier - §
Input File 1.0

[TA File |[Rrowse Sponda ke o
Command line view Jpendra Kumar Devisetty
tensorflow_image_classifier file (0) ﬂ

w Upendra Kumar Devisetty M Upendra Kumar Devisetty

de () a de ()

g‘ Tensorflow image classi...






_images/toolintegration14.png
& cyverse bisco
porechop example

Environment

Save 4 previw - ] Command Line Orer

Apttems porechon. exampie =)~ oetass e
- Tootusea: Secton name:
section [porechop 023 [input
| e
[porechop_exampe L
~ App cescrpton
FilesiFolders © = Foss
Wutiple Input ies
nput B

Input File

-

Input Folder

(v owag

TextNumerical Input

Yinfo Text

Command line view

3

Input File

©
)






_images/toolintegration18.png
porechop - fle 4 -0 file






_images/toolintegration17.png
% CyVerse Discovery Environmen

‘© porechop_example

B save 4 Prevew - (] Command Line Orer





_images/toolintegration9.png
90e00

Search Apps

Favorite Apps

& Manage Tools

1%, Switch View

Filter: Al

[5] Apps under development
[ Favorite Apps

[ My public apps

[5] Shared with me

Name

Integrated by

No apps to display!






_images/toolintegration3.png
Verse Discovery Enyge

€&~ Manage Tools
& Apps Tools~ Share~ (2 Refresh |Al v |[search tools e 00
Apps +  Workflow v Shae » G “T(,,_"_‘ Image name Tag Status nage Tools [, Switch View
Categories 4 RequestTool  [d kapeeliballgown-r-package Public i
[ My Apps H Topic H Operation ‘ kapeel/helitron Public
5] Apps under development X kapeel/sine latest Public SEEI
5] Favorite Apps 1 - — -
{5 My pubic apps tup bjoyce3/simprilyhtfilesetup 10 Public
[ Shared with me © LncReporter garylio806/incpipereporter 10 Public
© Kalisto kapeelkallisto_wrapper latest  Public
© Gffcompare kapeeligficompare latest  Public
© htpath-ist-splitter discoenviht-path-list-splitter latest  Public
© portaimehpc_createkeys docker.cyverse.org/portalmehpc_createkeys  3.0.0 read
© Mutiqe pvdbgO/multiqe latest  Public
© lastdn docker.cyverse.org/last latest  Public
o mta docker.cyverse.ora/imta vi5 Public -






_images/toolintegration13.png
ine Order

porechop_example
Tool used:
porechop 0.23
* App name:
porechop_example

* App description;
FosS

input
Input File Label - 1:

Browse

Details: Input File Label - 1
File Selector label
Input File Label - 1

Argument option:
Ent

Default input fl:

2

fle

Do not dsplay s emin the app.
W s fleldrequied.
Excludethis Hem f nothing s entered. &

Tool tp text:
Enter oo

“Type of information contained in this fie:
Unspeciied

Do not pass s argument o comman ne &

©

)

Browse

©





_images/static_site_docker.png
[ 0.0.0.0:32773

® 0.0.0.0:32773

Hello Docker!

This is being served from a docker
container running Nginx.

upendra kumar

(+]





_images/homeicon1.png





_images/homeicon2.png





_images/instructors_code.png
|static_site_docker|

.. |static_site_docker| image:: ../img/static_site_docker.png
:width: 750





_images/jn_galaxy.png
& InClassLab7 Template wSolut x
C O localhost:8888/notebooks/work/InClassLab7_Template_wSolutions.ipynb
"~ Jupyter InClassLab7_Template_wSolutions (unsaved changes)

Fle  Edt View Inset Cel Kemsl Wdgets  Help

4+ (@ B A ¥ HAn W C » | Code DIE]

Q% @ bl

A | Logou

Not Trusted |Python3 O

y (kpc)

In the esame nlane. now weiaht the data bv the velo

1w

0

w

alona the line of

Chikwan

om





_images/img_building_8.png
£~ Data: Tensorflow_image_classifier_-_1.0_analysis1_test-2019-01-08-23-55-05.7 (]

Upload + File~ Edit~ Download v Share~ Metadata ~ Q—“ Refresh 4 Trash ~

Navigation * Tensorflow_image_classifier_-_1.0_analysis1_test-2019-01-08-23-55-05.7 «
a TEST_-_NCBI_WGS_¢ Viewing: | /iplant/home/upendra_35/analyses/Tensorflow_image_classifier_-_1.0_analysis1_test-2019-01-08-23-55-05.7
() TEST_-_NCBI_WGS_¢ Name
() TEST_-_NCBI_WGS_¢ (7 logs
(] TEST_-_NCBI_WGS_¢

£-16401288243_36112bd52f m.out

16401288243_36112bd52f m.out
v 16401288243_36112bd52

(] TEST_-_NCBI_WGS_¢ [ save ¥ Refresh Wrap Text Line Numbers
() TEST_-_NCBI_WGS_ daisy (score = 0.99785)
- < bee (score = 0.00009)
Gl TEST_-_NCBI WGS S speedboat (score = 0.00008)
() TEST_-_NCBI_WGS_¢ mitten (score = 0.00006)

a - c as 4 sulphur butterfly, sulfur butterfly (score = 0.00004)
TEST_-_NCBI_WGS_¢

(] TEST_-_NCBI_WGS_¢





_images/img_building_9.png





_images/jn_login2.png
 Home X upendra kumar
<« C 1t | @ localhost:8888/tree * O 9 2 H e O
-2
~ Jupyter Logout
Files Running Clusters
Select items to perform actions on them. Upload |New~ &
— - Notebook: I
M | Julia 0.5.2 [
0 work o
s |
Other:
Text File
Folder

Terminal






_images/jn_login.png
~_
_ Home

& C v @ localhost:8888/tree

Z Jupyter

Files Running Clusters
Select items to perform actions on them.
(@] ~ B

O work

upendra kumar

O

- PORe«O

Logout

~

Upload New v || &

Name 4 Last Modified 4

5 months ago






_images/jn_login1.png
~_
_ Home

& C v @ localhost:8888/tree

Z Jupyter

Files Running Clusters
Select items to perform actions on them.
(@] ~ B

O work

upendra kumar

O

- PORe«O

Logout

~

Upload New v || &

Name 4 Last Modified 4

5 months ago






_images/singularity.png





_images/snakemake.png





_images/rstudio_login.png
Session  Build

@ File Edit Code View Plots
Q- ol?.\ @'v Go to file/function

Console

Debug

Terminal

R version 3.5.2 (2018-12-20) -- "Eggshell Igloo"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

Profile

~ Addins ~

Tools

Help

=

Environment

< 3

"} Global Environment ~

History

#” Import Dataset ~

Files Plots Packages

@) New Folder = © | Upload

/I\ Home
A Name

kitematic

Connections

£

Environment is empty

Help Viewer

© Delete -] Rename

{a' More ~

Size

rstudio ()

\M Project: (None) ~

=0

List ~

=0

Modified





_images/rstudio_ss.png
@& Search - Docker Hub X upendra kumar
&< C Y @ Secure | https://hub.docker.com/search/?isAutomated=0&isOfficial=0&page=1&pullCount=0&g=rstudio&starCount=0 % (El [ ) Q) B e O

Docker Store is the new place to discover public Docker content. Check it out —

@‘ Q rstudio Dashboard Explore Organizations Create . upendradevisetty

Repositories (526)

All -

- rocker/rstudio 169 1M+ >
public | automated build STARS PULLS DETAILS






_images/rstudio_login2.png
&

/€ Rstudio Sign In

X\

upendra kumar

C O © Not Secure | 0.0.0.0:8787/auth-sign-in

| O

eStudio

Username:

Sign in to RStudio

Password:

("] Stay signed in

[

PORAeO






_images/img_building_5.png
« - C 0O & https://de.cyverse.org/de/

@ CyVerse Discovery Environment

&= Apps
Apps ~ Workflow » Share v "’ Refresh | image classifier

Categories |«| Search results: 1 found for image classifier
I My Apps || Topic || Operation || HPC | Filter: Al ~

ﬁ Apps under development Name

[ Favorite Apps & Tensorflow image classifier - 1.0

[5 My public apps
[5] Shared with me





_images/img_building_6.png
Select a file e x|

Navigation '+ Image_classifier

o -

i ] tophat2-PE Viewing: | /iplant/home/shared/iplantcollaborative/example_data/Image_classifier

[y U tophat2-SE ""Name Last Modified Size
» (] tophat_aligner_pa | 16401288243_36112bd52f m.jpg 2019 Jan 8 16:47:14  54.92KB
& (] tophat_aligner_si
(] treeview
& (] trim-galore
& (. trimmomatic-0.33
b trinity
& (] trinity_normalize
& (] uncompress_files_
(. vbay
b vef_to_gff3
b vf_to_giff_4
i veontact
& () wordcount
. zmapqtl
() Image_classifier ~ Displaying 1 - 1 of 1
Selected file: 16401288243_36112bd52f_m.jpg






_images/img_building_4.png
Discovery Environment

Mudtiple Input Files

Files

Input File

18 File |Browse

Input Folder

&3 Folder w
Tt/ Wunserical Tnput -

Linto Temt

Command line view





_images/atmo_cp.png
Create Project

Project Name

CC2019

Description

Container Camp Workshop 2019

CANCEL CREATE






_images/atmo_launch.png
Launch an Instance / Basic Options

Basic Info Resources

Instance Name Allocation Source

workshop tutorial upendra_35

Base Image Version Provider

1.0 CyVerse Cloud - Marana

Project Instance Size

CC2019 small1 (CPU: 2, Mem: 8 GB, Disk: 30 GB)

Allocation Used
0% of 168 AUs from upendra_35

Resources Instance will Use
A total 14 of 32 alloted CPUs
I

A total 32 of 128 alloted GBs of Memory
|

4= Back £+ Advanced Options CANCEL LAUNCH INSTANCE






_images/atmo-8.png
Delete Instance

AWARNING Data will be lost.

The following instance will be shut down and all data will be permanently lost:

workshop tutorial #40865

Note: Your resource usage charts will not reflect changes until the instance is completely
deleted and has disappeared from your list of instances.

CANCEL YES, DELETE THIS INSTANCE






_images/atmo-9.png
o0 & https://atmo.cyverse.org/application/projects/7950/resources

@ CYVERSE ot Dashboard '™ Projects M Images @ Help

£32 RESOURCES DETAILS

CC2019

NEW

Q
©

= Instances

You have not added any instances to this project.





_images/atmoactive.png
§# RESOURCES B peTALS

CC2020

= Instances

[u] Name

[ Ubuntu 18 04 GUI XFCE Base

® Active

Activity
N/A

IP Address

128.196.142.89

Size

Tiny1

& OPTIONS ¥

SortBy Name
Provider

CyVerse Cloud - Marana





_images/atmoauth.png
amcooksey@ubuntuair:~$ ssh 128.196.142.89
The authenticity of host '128.196.142.89 (128.196.142.89)' can't be established.

ECDSA key fingerprint is SHA256:8U/jm8DsF1feHFauqfKLRIQiRHILZ+UwPyH+MbnxDLI .
Are you sure you want to continue connecting (yes/no)? yes





_images/atmo_launch0.png
c O & https://atmo.cyverse.org/application/projects/7950/resources

@ CYVERSE ot Dashboard '™ Projects M Images @ Help

£32 RESOURCES DETAILS

CC2019

NEW

Q
©

Instance

stances to this project.

I )
<
S
c
3
(V]






_images/atmo_launch1.png
Launch an Instance / Select an Image

First choose an image for your instance

Show Featured

Ubuntu 18.04

Showing 2 image(s) for "Ubuntu 18.04"

Ubuntu 18.04 GUI Base Ubuntu Bionic image with XFCE
a d XFCE Base Desktop

May 1, 2018 12:09 pm

by edwins

Ubuntu 18.04 NoGUI Base Ubuntu Bionic image

NoDesktop Base

Apr 26,2018 01:06 pm
by edwins

£+ Advanced Options

base desktop Featured gui

Ubuntu ubuntu1804 xfce

base Featured nodesktop

nogui Ubuntu ubuntu1804

CANCEL LAUNCH INSTANCE






_images/atmosuccess.png
Warning: Permanently added '128.196.142.89' (ECDSA) to the list of known hosts.
amcooksey@128.196.142.89's password:
Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-45-generic x86_64)

System information as of Fri Mar 6 13:24:36 MST 2020

System load: 0.08 Processes: 175
Usage of /: 16.9% of 19.21GB  Users logged in: 0
Memory usage: 16% IP address for ens3: 172.29.8.6

Swap usage: 0%

* Meltdown, Spectre and Ubuntu: What are the attack vectors,
how the fixes work, and everything else you need to know
- https://ubu.one/u2Know

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

274 packages can be updated.
104 updates are security updates.

**% System restart required ***

Welcome to

AN e
JONE T NN NN N N
/2 N G0 W W 0 B 0 ) I
728N W V| I ) D/ G ) [ W |






_images/auto-1.png
& https://hub.docker.com

upendradevisetty v Q search by repository name...





_images/auto-2.png
Repositories Create
Create Repository

upendradevisetty ¥ tensorflow_image_classifier

Visibility
Using 0 of 1 private repositories. Get more

Public ® Private &

Public repositories appear in Docker Only you can view private repositories
Hub search results





nav.xhtml

    
      Table of Contents


      
        		
          Expected outcomes:
        


        		
          Learning objectives
        


        		
          FAIR Data principles
        


        		
          Code of Conduct
        


        		
          Pre-Workshop Setup
        


        		
          Location
        


        		
          Agenda
        


        		
          About CyVerse
        


        		
          Introduction to Reproducible Science
        


        		
          Basics of Linux
          
            		
              Common Linux Operating Systems
            


            		
              Installing Linux
              
                		
                  Desktop-based Distributions
                


                		
                  Windows Subsystem for Linux
                


                		
                  Windows Linux Dual boot
                


                		
                  Package Managers
                


              


            


            		
              Self Paced
            


          


        


        		
          Training session in Docker
        


        		
          Training session in Singularity
        


        		
          Breakout sessions
        


        		
          Finding the perfect container
          
            		
              Docker Registries
            


            		
              Search image registries
              
                		
                  <a href=”https://hub.docker.com” target=”blank”>Docker Hub</a>
                


                		
                  <a href=”https://biocontainers.pro/#/registry” target=”blank”>BioContainers Registry</a>
                


                		
                  <a href=”https://quay.io/” target=”blank”>Quay</a>
                


                		
                  NVIDIA GPU Cloud
                


                		
                  Pull an image from a registry
                


              


            


          


        


        		
          Introduction to Docker
          
            		
              Prerequisites
            


            		
              1.0 Docker Run
              
                		
                  1.1 House Keeping and Cleaning Up
                


                		
                  2.0  Managing Docker images
                


                		
                  2.1 Pulling and Running a JupyterLab or RStudio-Server
                


              


            


            		
              3. Managing Data in Docker
              
                		
                  3.1 Volumes
                


              


            


            		
              Docker Commands
            


            		
              Getting more help with Docker
            


            		
              4. Extra Demos
              
                		
                  4.1 Portainer
                


                		
                  4.2 Play-with-docker (PWD)
                


              


            


          


        


        		
          Advanced Docker
          
            		
              1.0 The Dockerfile
            


            		
              2.0 Docker Build
              
                		
                  2.1 Test the image
                


                		
                  2.2 Tagging images
                


              


            


            		
              3.0 Publishing your image
              
                		
                  3.1 Log into the Docker Hub Registry
                


                		
                  3.2 Pull and run the image from the remote repository
                


                		
                  3.3 Private repositories
                


              


            


            		
              4.0 Automated Docker image building from GitHub
              
                		
                  4.1 Prerequisites
                


                		
                  4.2 Link your Docker Hub account to GitHub
                


                		
                  4.3 Automated Container Builds
                


                		
                  Exercise 1 (5-10 mins): Updating and automated building
                


              


            


            		
              5.0 Volumes Continued
              
                		
                  5.3 Bind mounts
                


              


            


            		
              6.0 Docker Compose for multi-container apps
            


          


        


        		
          Introduction to Singularity
          
            		
              1. Prerequisites
            


            		
              2. Singularity Installation
              
                		
                  2.1 Install Singularity on Laptop
                


                		
                  2.2 HPC
                


                		
                  2.3 Atmosphere Cloud
                


                		
                  2.4 Check Installation
                


              


            


            		
              3. Downloading pre-built images
              
                		
                  3.1 Pulling an image from Singularity Hub
                


                		
                  3.2 Pulling an image from Docker Hub
                


                		
                  3.3 Pulling an image from Sylabs cloud library
                


              


            


            		
              4 Interact with images
              
                		
                  4.1 Shell
                


                		
                  4.2 Executing commands
                


                		
                  4.3 Running a container
                


                		
                  4.3 Running a container on HPC
                


              


            


          


        


        		
          Advanced Singularity
          
            		
              5.0 Building your own Containers from scratch
            


            		
              5.1 Keep track of downloaded containers
              
                		
                  5.2 Building Singularity containers
                


              


            


            		
              5.2.1: Exercise (~30 minutes): Create a Singularity file
            


          


        


        		
          Setting up Singularity file system
          
            		
              Example Singularity file
            


            		
              Cryptographic Security
            


          


        


        		
          Singularity and High Performance Computing
          
            		
              How do HPC systems fit into the development workflow?
            


            		
              Singularity and MPI
            


            		
              Base Docker images
            


            		
              Example Containerized MPI App
            


            		
              Running an MPI Container on Stampede2
            


            		
              Singularity and GPU Computing
            


          


        


        		
          BioContainers
          
            		
              Introduction to Bioconda
            


            		
              Glossary
            


            		
              Where to Get a BioContainer
              
                		
                  The BioContainers Registry
                


                		
                  Quay
                


                		
                  DockerHub
                


              


            


            		
              How to Request a BioContainer
            


            		
              How to Use a BioContainer
              
                		
                  How to Install Docker
                


                		
                  Get Data to Use with Your Container
                


                		
                  Use ‘docker pull’ to Get the Image
                


                		
                  Use the ‘docker run’ Command to Run the Container
                


                		
                  What it All Means
                


              


            


            		
              How to Build a BioContainer
            


            		
              Useful Links
            


          


        


        		
          Containerized Workflows
          
            		
              Workflow Management Using Snakemake
            


          


        


        		
          SETUP
        


        		
          Why Snakemake
        


        		
          Other Workflow Managers
        


        		
          Docker for Data Science
          
            		
              1. Launch a Jupyter notebook conatiner
            


            		
              2. Launch a RStudio container
            


          


        


        		
          Booting a CyVerse Atmosphere instance
        


        		
          Tool integration in the Discovery Environment (DE)
          
            		
              Why use the DE?
            


            		
              Types of apps
            


            		
              <a href=”https://cyverse-de-tool-integration-quickstart.readthedocs-hosted.com/en/latest/index.html” target=”blank”>Tool Integration into the DE</a>
            


            		
              Building an App for Your Tool
            


            		
              Additional resources
            


          


        


        		
          Deploying apps in CyVerse Discovery Environment
        


        		
          Deploying interactive apps in CyVerse Discovery Environment
          
            		
              1. Search JupyterLab App
            


            		
              2. Launch analysis
            


            		
              3. Navigate to JupyterLab url
            


            		
              4. Create Jupyter notebook
            


            		
              5. Write your code
            


            		
              6. Complet and Save Outputs
            


          


        


        		
          Docker related resources
        


        		
          Singularity related resources
          
            		
              Singularity Talks
            


          


        


        		
          Other resources
        


        		
          For instructors!
        


        		
          Problems? Bugs? Questions?
        


      


    
  

_images/auto_build-2.1.png
& Docker Hub X D upendra kumar

& > C 1 | @ Secure | https://hub.docker.com/add/automated-build/github/form/upendrak/fla... i‘(‘ @ Y PODOHe

By default Automated Builds will match branch names to Docker build tags. Click here to customize behavior.

Customize Autobuild Tags

Your image will build automatically when your source repository is pushed based on the following rules. Revert to default settings

Push Type Name Dockerfile Location Docker Tag
e -0 r e s
‘ Branch ~ ‘ All branches except master ’ ‘ / ’ ‘ Same as branch ’ -






_images/auto_build-5.png
@ upendradevisetty/flask-app - X upendra kumar

& > C {) | & Secure| https://hub.docker.com/r/upendradevisetty/flask-app/ x| G 0} | e

Dashboard  Explore  Orgar

PUBLIC | AUTOMATED BUILD

upendradevisetty/flask-app ¢

Repolnfo  Tags  Dockerle  BuildDetails  Build Settings  Collaborators  Webhooks  Settings

Short Description @ Docker Pull Command [
Conainer Camp flask-app docker pull upendradevisetty
Full Description @ Owner

Full description is empty for this repo. upendradevisetty





_images/auto-3.png
Build Settings (optional)

Autobuild triggers a new build with every git push to your source code repository. Learn More.

O ¢©

Connected Connected

O upendrak X v tensorflow_image_classifier X v

v Click here to customize the build settings

BUILD RULES +

The build rules below specify how to build your source into Docker images.

Source Type Source Docker Tag  Dockerfile Build
location Caching
Branch ) —_
master 1.0 Dockerfile ) []

» View example build rules

Cancel Create & Build






_images/auto-4.png
Automated Builds

Autobuild triggers a new build with every git push to your source code repository. Learn More.

Q upendrak/tensorflow image classifier | Use Docker Hub's infrastructure | Autotests: Off

Docker Tag Source Build Status Autobuild Build caching

1.0 master SUCCESS v v Trigger P






_images/bind_mount.png
volume






_images/auto_build-6.png
<

@ upendradevisettyffiask-app - x |

upendra kumar

c O \ @ Secure | https://hub.docker.com/r/upendradevisetty/flask-app/~/settings/automated-builds/

* G prP0Ode

BUIla Setings

When active, builds will happen automatically on pushes.

The build rules below speciy how to build your source into Docker images. The name can be a string or a regex.
The Docker Tag name may contain variables. We currently support {sourceref), which refers to the source
branch/tag name. Show more

le) Source Repository
upendrak/flask-app

Type Name Dockerfle Location Docker Tag Name
ban < et e e | .
Branch ~ ‘ All branches except master ‘ ‘ / ‘ ‘ Same as branch -






_images/auto_build-7.png
@ upendradevisetty/flask-app - X upendra kumar

& C (| @ secure | https:/hub.docker.com/rjupendradevisety)flask-app/builds/ ¥*| O ae

Q Search Dashboard Explore Organizations Create upendradevisetty

PUBLIC | AUTOMATED BUILD

upendradevisetty/flask-app ¢

Repolnfo  Tags  Dockerfle  Build Details  Build Settings  Collaborators  Webhooks  Settings.

Status Actions Tag Created Last Source Repository
Updated
© upendrak/flask-app
amintes 212
v Success 10 seconds
ago

ago





_images/biocontainers1.png
Trimming adapters from read ends

SQK-NSK007_Y_Top:
SQK-NSK007_Y_Bottom:
SQK-MAP0O6_Y_Top_SK63:
SQK-MAP006_Y_Bottom_SK64:
PCR_1_start:

PCR_1_end:
PCR_tail_1_start:
PCR_tail_1_end:
PCR_tail_2_start:
PCR_tail_2_end:

AATGTACTTCGTTCAGTTACGTATTGCT
GCAATACGTAACTGAACGAAGT
GGTTGTTTCTGTTGGTGCTGATATTGCT
GCAATATCAGCACCAACAGAAA
ACTTGCCTGTCGCTCTATCTTC
GAAGATAGAGCGACAGGCAAGT
TTAACCTTTCTGTTGGTGCTGATATTGC
GCAATATCAGCACCAACAGAAAGGTTAA
TTAACCTACTTGCCTGTCGCTCTATCTTC
GAAGATAGAGCGACAGGCAAGTAGGTTAA





_images/biocontainers11.png
[amcooksey@rogue ~]$ sudo docker pull quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3
[sudo] password for amcooksey:

0.2.3_seqan2.1.1--py36h2d50403_3: Pulling from biocontainers/porechop

a3ed95caeb02: Already exists

bodc45cd432d: Already exists

9466b3513669: Already exists

ddd482ea7b54: Already exists

4d69f833b9d8: Already exists

e7c454e5167d: Already exists

€38092b005c0: Already exists

f879b42dfe2b: Already exists

9417599398f7: Pull complete

Digest: sha256:65f1cbe96399eff89df55169f25d2b52f46115f9d4080c388fdeb7b22dc76b30

Downloaded newer image for quay.io/biocontainers/porechop:0.2.3_seqan2.1.1--py36h2d50403_3






_images/biocontainers12.png
[amcooksey@rogue racon]$ 1s -1
total 11350140

-rw-r----- 1
-rw-r----- 1
-rw-r----- 1

amcooksey
amcooksey
amcooksey
root

amcooksey
amcooksey

iplant-everyone
iplant-everyone
iplant-everyone
root

iplant-everyone
iplant-everyone

346188054 May
23424 May
11745 May

838803132 Feb

9579801472 May

857704006 May

concat_reads.fastq
miniasm_cat_output.fasta
minimap_cat_rnd2_out.paf
porechop_out.fastq
SRR6059708. fastq
SRR6059710.fastq





_images/biocontainers16.png
Q biocontainer Explore  Repositories  Organizations ~ Get Help ~

& Docker EE & Docker CE (=] containers & Plugins

Filters 1-25 of 905 results for biocontainer. Clear search Most Popular M
Docker Certified @
["] & Docker Certified biocontainers/biocontainers 10k 5

. . Downloads ~ Stars
By biocontainers + Updated 2 months ago

Images
Blocontainers base Image

[ verified Publisher @
‘Docker Certiied And Veriied Pubiisher Content Container  Linux  x86:64

D Official Images @
Offcal Images Pubished By Docker

Categorles ) biocontainers/samtools ‘5:;‘(; 5,32
By biocontainers * Updated 4 months ago

[] Analytics

[] Application Frameworks Tools for manipulating next-generation sequencing data

[] Application nfrastructure Container  Linux  x86-64

["] Application Services





_images/biocontainers18.png
[ BioContainers / containers ©Waich~ 27 kStar 205  YFork 116

Code @ Issues 36 Pull requests § ZenHub Projects 0 Insights

# Want to contribute to BioContainers/containers? Dismiss

I you have a bug or an idea, browse the open issues before opening a new one. You can also take
alook at the Open Source Guide.

Filters ~ is:open is:issue label:"Container Request" © Labels 13 " Milestones 1 ue

B3 Clear current search query, filters, and sorts

® 180pen v 46 Closed Author~  Labels~  Projects~  Miesiones~  Assignee~  Sort~
@ Container request: breseq Container Request o2
#227 opened on May 3, 2018 by yeemey

® PAUP Container Request
#164 opened on Jun 28, 2017 by andzandz1l

® phylobayes (Container Reqest
#162 opened on Jun 26, 2017 by andzandzil






_images/biocontainers13.png
BIOCONDA





_images/biocontainers15.png
@ BioContainers Q Registry @ Documentation O GitHub W Twitter & Scholar = Resources v

Search

sl o e | o | ey voma

2PG_CARTESIAN O25K A5-MISEQ @958 ABACAS
2pg cartesian is a framework of optimization ASmiseq is a pipeline for assembling dna Algorithm  based  automatic ~ contiguation  of
algorithms for protein structure prediction. sequence data generated on the illumina assembled sequences

sequencing platform. this readme wil ...






_images/biocontainers20.png
porecho]

REPO @ biocontainers/porechop

RE [ thanhleviet/porechop

Docker image of porechop, a QC tool

Quay [ builds, analyzes, distributes ] yo





_images/biocontainers3.png
«)QUAY Explore  Tour  Tutorial  Pricing search signin

B8 biocontainers / porechop

0 Repository Tags BES -

1-7of7 Filter Tags.
e ASTMODIFIED | SECURITYSC BXPIRES MANIFEST

0.2.3_seqan2.1.1-py36h2d50403_3 7 months ago Unsupported 65F1cbe96399

L
&

seqan2.1.1-py3sh2d50403_3 7 months ago Unsupported v Beat1e993462

seqan2.1.1-py35_2 ayearago Unsupported v 5c0403963¢69

3_seqan2.1.1-py36_2 ayearago Unsupported 3fba7crb2ds]

seqan2.1.1-py36_1 ayearago Unsupported v 1e374794cc59

seqan2.1.1-py35_1 ayearago Unsupported v 22504bb6deac

3_seqan2.1.1-0 ayearago Unsupported 4bfeabacbess






_images/biocontainers19.png
$ BioContainers Q Registry @ Documentation O Github W Twitter & Scholar = Resources v

Tool: PORECHOP Similar Containers

Description:

License:

Type Tool Version = Modifed - Size - FullTag
023

y.4 porechop oo 2018071 0.00M ([ docker pullquayiofbiocontainersiporechop:0.2.3_seqan2.11-py36n2ds0 | O
023

y.4 porechop oo 2018013 0.00M ([ docker pullquayiofbiocontainersiporechop0.2.3_seqan2 L1-py362 | O
023

y.4 porechop oo 2018012 0.00M ([ docker pullquayiofbiocontainersiporechop0.2.3_seqan2 L1-py36 1 | D
023

y.4 porechop oo 2018012 0.00M [ docker pullquayiofbiocontainersiporechop0.2.3_seqan2 L1-py35 1 | O
023

y.4 porechop oo 2018013 0.00M [ docker pullquayiofbiocontainersiporechop0.2.3_seqan2 L1-py352 | O
023

y.4 porechop oo 2018012 0.00M [ docker pull quayiofbiocontainersiporechop0.2.3_seqan2 11-0 ] o

i porechop 2SR amsor 000 [ dosker pull quayiolbiocontainersiporechop:0.2.3_seqan2 L 1-py3shds0 | ©
023

o porseop PR eosz 00w [ conialoeandatuge ¢ boconda poreEiop=023 se 1 1op | ©
023

o porseop PR eosz 00w [ conialoeandatuge ¢ boconda poreEiop=023 se 1 1op | ©
023

o porseop PR eosz 00w [ conialoeandatuge ¢ boconda poreEiop=023 se 1 1op | ©
023

o porechop 5% 018062 008M | condainsial-c condadorge < boconda porechop=—0.23_seqan2.Lip | O

n2.11





_images/biocontainers2.png
No adapters found - output reads are unchanged from input reads

Saving trimmed reads to file

Saved result to /working-dir/porechop_out.fastq





_images/biocontainers5a1.png
@ BIOCONTAINERS





_images/biocontainers6.png
Loading reads
SRR6059710. fastq
543,374 reads loaded

>

Looking for known adapter sets
4,990 / 10,000 (49.9%)f






_images/biocontainers5a.png
@ BIOCONTAINERS





_images/biocontainers8.png
Fetch Tag: ® 0.2.3_seqan2.1.1--py36h2d50403_3

Image Format:

Docker Py tag)

Docker Pull by digest)
Squashed Docker Image

kt Fetch






_images/cc-boat.png
DON’T MISS THE -
BOAT! ..'...h‘.





_images/create_repo2.png
O upendrak/flask-app X upendra kumar

& C' () | @ GitHub, Inc. [US] | https://github.com/upendrak/flask-app aQ w O [ ] @ d e

...or push an existing repository from the command line

git remote add origin https://github.com/upendrak/flask-app.git B
git push -u origin master






_images/create_repo.png
&

() Create a New Repository X

upendra kumar

C 1Y @ GitHub, Inc. [US] | https://github.com/new

Owner Repository name
B upendrak ~ | flask-app

Great repository names are short and memorable. Need inspiration? How about friendly-bass